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Abstract 
This study investigates the impact of venue-specific factors on high run chases in 
T20 International (T20I) cricket using Bayesian Networks (BNs) derived from 
Gaussian Graphical Models (GGMs). Analyzing data from 458 high-scoring 
matches between 2005 and 2024, the study incorporates variables such as toss 
outcomes, pitch conditions, team rankings, and match results to construct 
probabilistic models tailored to home, neutral, and away venues. Regularization 
through Graphical Lasso ensured sparsity, yielding interpretable networks with 
optimal complexity. Results reveal that venue conditions significantly influence 
dependency structures, with away venues exhibiting denser interdependencies 
and requiring greater adaptability. Critical factors identified include Toss 
Outcome (TO), Toss Decision (TD), and Pitch Conditions (PC), while Result (R) 
consistently emerged as the most influential variable across all venues. Networks 
with 16 edges provided the best balance of fit and simplicity, validated through 
posterior probabilities. These findings highlight the importance of venue-specific 
strategies for optimizing high run chases in T20I cricket. The study advances the 

mailto:qus28jan@gmail.com
mailto:hi2shahid@gmail.com


290 

 
Dialogue Social Science Review (DSSR) 
www.journalforeducationalresearch.online 
 
ISSN Online: 3007-3154 
ISSN Print: 3007-3146 
 

Vol. 2 No. 4 (November) (2024)  
 

 

application of probabilistic modeling in cricket analytics, offering actionable 
insights for teams and decision-makers. Future research could integrate 
additional factors, such as player metrics and weather conditions, to refine 
predictive models further and expand their applicability across different cricket 
formats. 
Key Words: Cricket Analytics, Bayesian Network, Gaussian Graphical Models, 
Probabilistic Modeling, Venue-Specific factors, Sparsity 
 
Introduction 
The T20 format of cricket has transformed the sport, introducing an exciting 
fast-paced dynamic where high-scoring matches are common. Among these, 
successful high run chases demand exceptional strategic planning and execution. 
Such outcomes rely on a complex interplay of factors, including pitch conditions, 
toss decisions, match settings, and team performance (Shah et al.).  
Understanding these dependencies has become increasingly important for 
analysts and teams. Over the years, researchers have explored deterministic and 
probabilistic approaches to model these dynamics and extract actionable 
insights. For instance, Isaacs and Finch (2021) emphasized the need for 
advanced statistical models to capture the intricate factors influencing match 
outcomes, especially in high-scoring games. 
Probabilistic models, particularly Bayesian Networks (BNs), have emerged as a 
robust framework in sports analytics due to their ability to represent 
uncertainties and dependencies among variables. Representing relationships as 
directed acyclic graphs, BNs provide a way to predict outcomes and infer the 
influence of variables like toss outcomes, batting orders, and rankings on match 
results. Pearl (1988) introduced Bayesian reasoning as a structured approach for 
analyzing complex systems, which has since found applications across various 
domains, including cricket. More recently, Samad (2019) demonstrated the use 
of probabilistic models in cricket analytics, showing how BNs can identify critical 
factors that provide run-scoring advantages, offering valuable insights for tactical 
decision-making. 
Gaussian Graphical Models (GGMs) complement Bayesian Networks by 
identifying conditional dependencies through the precision matrix, which 
represents the inverse of the covariance matrix. GGMs are effective in high-
dimensional datasets, as they focus on reducing complexity by eliminating 
weaker relationships through regularization techniques like Graphical Lasso 
(Friedman et al., 2008). This sparsity allows for clearer, interpretable networks 
that highlight meaningful connections between variables. GGMs are particularly 
relevant for T20 cricket, where they can pinpoint critical dependencies among 
factors such as toss outcomes, pitch conditions, and team rankings, providing the 
structural foundation for Bayesian Network models. 
The impact of venue conditions whether home, neutral, or away on match 
outcomes is a critical area of analysis in cricket. Pollard (2008) and Clarke and 
Norman (2009) highlighted that home advantage often stems from familiarity 
with pitch conditions, crowd support, and reduced fatigue due to less travel. 
Neutral venues, on the other hand, minimize these advantages, emphasizing 
strategic adaptability, while away venues present significant challenges due to 
unfamiliar conditions and external pressures. These venue-specific dynamics are 
crucial in understanding how factors like toss decisions and team rankings 
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interact to influence match results, particularly in the context of high run chases. 
This study explores these relationships, leveraging probabilistic methods to 
analyze venue-specific variations. 
While cricket analytics has advanced significantly, there is limited research on 
modeling high run chases using probabilistic approaches tailored to venue-
specific dynamics. Although existing studies have examined individual factors, 
few have integrated Gaussian Graphical Models with Bayesian Networks to offer 
a comprehensive probabilistic framework. This study addresses this gap by 
analyzing data from 458 high-scoring T20I matches played between 2005 and 
2024. By incorporating GGM-based Bayesian Networks, it aims to identify the 
most influential factors affecting match outcomes and evaluate how these 
relationships vary across different venues. 
This research makes three significant contributions. Firstly, it applies a novel 
GGM-based approach to construct Bayesian Networks, effectively capturing the 
probabilistic dependencies between factors. Secondly, it offers a detailed venue-
wise analysis, revealing how conditions like toss outcomes, pitch types, and team 
rankings influence high run chases. Lastly, the study advances probabilistic 
modeling in cricket analytics, providing a foundation for future research into 
predictive modeling and decision-making in other sports. These findings have 
practical implications for improving strategies, particularly in international 
competitions played across diverse venues, highlighting the role of integrated 
probabilistic models in advancing sports analytics. 
 
Literature Review 
In recent years, the use of probabilistic approaches in sports analytics has gained 
momentum, particularly in cricket. Bayesian Networks (BNs) are a prominent 
method for representing and analyzing dependencies between variables in a 
structured, interpretable manner. Heckerman and Geiger (1995) demonstrated 
how BNs could effectively model probabilistic relationships, making them 
invaluable in scenarios requiring uncertainty quantification and decision-
making. Their relevance in cricket analytics has grown as factors like toss 
outcomes, team strategies, and batting orders significantly impact match 
outcomes. Mohan, Pearl, and Tian (2013) further highlighted the role of 
graphical models in causal reasoning, underscoring their capacity to handle 
complex interdependencies. 
The integration of probabilistic models with machine learning has also advanced 
cricket analytics. López-Pintado et al. (2021) introduced hybrid models that 
combine Bayesian reasoning with regression-based methods to predict player 
and team performance. These models enhance interpretability while maintaining 
predictive accuracy, making them well-suited for high-stakes formats like T20 
cricket. Similarly, Pereira et al. (2015) demonstrated the application of Bayesian 
classifiers in analyzing cricket matches, showing their ability to incorporate 
domain-specific knowledge to improve predictive capabilities. 
Gaussian Graphical Models (GGMs) have become a cornerstone in the 
development of Bayesian Networks, particularly when dealing with high-
dimensional data. GGMs use the precision matrix, derived as the inverse of the 
covariance matrix, to identify conditional dependencies among variables. 
Lauritzen (1996) emphasized their utility in constructing sparse networks, which 
are easier to interpret while preserving critical relationships. Regularization 
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techniques like Graphical Lasso, introduced by Friedman, Hastie, and Tibshirani 
(2008), have been pivotal in ensuring that weaker dependencies are excluded, 
enabling more focused and interpretable analyses. These methods are especially 
valuable in cricket, where numerous interacting factors, such as pitch conditions, 
match settings, and rankings, require systematic exploration. 
Venue-specific dynamics significantly influence match outcomes, as playing 
conditions vary considerably between home, neutral, and away venues. Research 
by Pollard (2008) and Clarke and Norman (2009) showed that home advantage 
often results from factors such as pitch familiarity, crowd support, and reduced 
travel fatigue. Neutral venues, by contrast, equalize conditions, emphasizing 
adaptability and strategic planning, while away matches present challenges due 
to unfamiliar environments and external pressures. Narayanan and Rajagopal 
(2020) extended this analysis, exploring how venue conditions impact team 
performance and strategy. Ahmed et al. (2022) highlighted the importance of 
pitch conditions as a critical factor in batting performance, further emphasizing 
the need for venue-specific analyses. 
The use of probabilistic models to predict and analyze match outcomes has 
grown substantially, with applications extending to causal inference. Peters et al. 
(2014) introduced methods for using invariant predictions in sports analytics, 
allowing analysts to estimate the effects of specific strategies, such as batting 
order changes or field placements, on match results. These causal models are 
particularly relevant in T20 cricket, where real-time decision-making plays a 
crucial role in determining outcomes. However, integrating domain-specific 
constraints with probabilistic models remains a challenge. Smith et al. (2021) 
proposed an approach that incorporates expert knowledge into statistical models, 
improving their relevance and interpretability while enhancing decision-making 
processes in sports analytics. 
The literature demonstrates that probabilistic frameworks like Bayesian 
Networks and GGMs are instrumental in cricket analytics, providing tools to 
model complex interdependencies and generate actionable insights. These 
methods continue to advance the field, paving the way for more precise analyses 
and practical applications in decision-making across sports. 
 
Methodology 
The study investigates venue-wise factors influencing high run chases in T20I 
cricket using Bayesian Networks derived from Gaussian Graphical Models 
(GGMs).  
 
Data Collection 
Data from 458 T20I high scoring matches (2005–2024) were collected including 
variables such as Venue (home, neutral, away), Pitch Conditions, Match 
Conditions, Batting Order, Toss Outcome, Toss Decision, Team Rankings, and 
Result. The detail descriptions of factors with their levels are shown in Table 1 
below; 
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                Table 1: Description of factors affecting team performance 
Factor Name Status Level Level  Label 
Result/outcome        won, lost  2        1:won 

       0: lost 

 
Venue(Vn) 

 

 
Home, away, neutral 

 

 
 
 

 
3 

     -1: away 
      0:neutral 
      1: home 

 
Match condition(MC) 

 
day, night, day/night 

 
 

 
3  

     -1: night 
      0: day/nigh 
      1: day 

 
Toss outcomes(TO) 

 
won, lost 

 
          2 

      0: lost 
      1: won 

 
Toss decision(TD) 

 
bat, field 

 
      2 

      0: won the toss and field 
      1: lost the toss and bat 

Batting Order 
 
 
 
 

 

low, medium, upper 
 

 
 

 

3 
 

 
 

 

-1: represents lower order 
           from Player 8 to 10 
     0: displays middle order  
          from player 4 to 7. 

1: signifies upper order of 
       player from position 1 to 3. 

Pitch condition (PC) slow & low,  balanced, 
Batting pitch, bowling 

pitch 

 
3 

 
 

     -1: indicates slow and low. 
      0: denotes balanced. 

1: show a batting friendly 
     2: represent bowling friendly 

Ranking of Team 
 
 

weak, average , strong 
 

 

3 
 

 

  -1: indicate ranking above 10 
     0: represent ranking >5 
         and <10 
   1: display ranking from 1 to 5 

Ranking of opponent 
 
 

weak, average , strong 
 

 

3 
 

 

 -1: indicate ranking above 10 
     0: represent ranking >5 
          and <10 
     1: display ranking from 1 to 5 

 
Statistical Analysis 
GGMs were used to identify conditional dependencies through precision matrices 
and regularized with Graphical Lasso for sparsity. The undirected GGM structure 
was converted into a Directed Acyclic Graph (DAG) for Bayesian Network 
analysis. Venue-specific networks were analyzed for sparsity, edge evidence 
probabilities, and posterior probabilities, revealing optimal complexity at 16 
edges. Centrality measures (Betweenness, Closeness, Strength, Expected 
Influence) identified key variables like Toss Outcome, Pitch Conditions, and 
Result across venues. Validation was conducted using posterior probabilities, 
and network visualizations highlighted dependency strengths. JASP was used for 
GGM analysis, and R software supported Bayesian Network modeling and 
visualization. 
Gaussian Graphical Model (GGM) 
A GGM is an undirected graphical model used to identify conditional 
dependencies between variables. In this study, the GGM was employed to analyze 
probabilistic relationships among factors like Toss Outcome, Pitch Conditions, 
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and Result. The precision matrix  , derived from the covariance matrix  , was 
used to estimate these dependencies.  

            
In a GGM, if     (off-diagonal element of Θ) is zero, variable    and    are 

conditionally independent. For example, relationships between Toss Outcome 
(TO) and Toss Decision (TD) are captured by non-zero elements in Θ. 
Regularization through Graphical Lasso ensured sparsity, resulting in 
interpretable networks by penalizing weaker connections. 
 
Directed Acyclic Graph (DAG) 
A DAG is a graphical structure where directed edges represent probabilistic 
influences, and cycles are prohibited. In the venue-wise analysis, the undirected 
GGM structure was converted into a DAG to model directional dependencies, 
such as how Toss Outcome (TO) influences Toss Decision (TD) and how these 
collectively affect the Result (R). 
A DAG is a probabilistic representation where each directed edge i→j indicates a 
dependency. The joint probability distribution is factorized as: 

               ∏ (  |           )       

 

   

 

For instance, the probability of Result (R) depends on Toss Decision (TD) and 
Pitch Conditions (PC): 

        |               
DAGs are constructed from the GGM structure to model these relationships. 
 
Sparsity 
Sparsity indicates the proportion of non-zero edges (connections) in a network 
relative to the total possible edges. Networks with high sparsity (fewer edges) are 
simpler, while lower sparsity reflects denser dependencies. 
For a network with “n” nodes, the total possible edges are given by: 

                                                                
      

 
        

Sparsity(S) is defined as; 

    
              

           
        

In this study home venue had 12 edges, yielding; 

    
  

  
       

The home venue network had 12 edges (sparsity = 0.571), indicating fewer and 
more selective dependencies, whereas the away venue network had 14 edges 
(sparsity = 0.500), showing more complex relationships. 
 
Edge Evidence Probability 
The edge evidence probability quantifies the likelihood of a connection between 
two variables, calculated as: 

 (      |    )  
∫      |             

∫      |       
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For example, the strong connection between Toss Decision (TD) and Result (R) 
at away venues had P=1.000. 
 

Posterior Probability 
Posterior probability evaluates the likelihood of a network structure ς given data 
Ɗ is; 

   |   
(   |       )

    
      

Here,         is the likelihood,      is the prior probability of the structure, and 
    is the marginal likelihood. Networks with 16 edges had the highest posterior 
probability in all venues, balancing complexity and fit. 
 
Centrality Measures 
Centrality measures assess the importance of variables within the network: 
 

 Betweenness: Highlights how often a variable bridges others (e.g., Toss 
Outcome (TO) at away venues). 

            ∑
      

   
     

       

 Closeness: Measures the ease with which a variable influences others 
(e.g., Pitch Conditions (PC) at neutral venues). 

                
 

              
       

Where           is the shortest path distance between    and   . 

 Strength: Captures the direct cumulative impact of a variable (e.g., 
Result (R) across all venues). 
              ∑             

where      is the weight of the edge between     and   . 

 Expected Influence: Reflects the overall effect of variables, showing 
Result (R), Toss Outcome (TO), and Pitch Conditions (PC) as the most 
influential factors. 

 
Complexity 
It refers to the number of edges in a network. The relationship between network 
complexity and posterior probability is captured by plotting the number of edges 
(E) against posterior probability (P): 

                                ( ∣∣     ) (    )            
Moderately complex networks with 16 edges showed peak posterior probabilities, 
emphasizing the balance between simplicity and explanatory power. 
 
Bayesian Network (BN) 
A BN is a directed probabilistic model constructed from the GGM. The BN 
represents the joint distribution of variables as a DAG, combining structure and 
parameters: 

               ∏    |           
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For example, the probability of a match result (R) depends on Pitch Conditions 
(PC) and Toss Decision (TD): 

        |              
Precision Matrix 
The precision matrix, the inverse of the covariance matrix, identifies direct 
relationships between variables while controlling for others. The precision 
matrix, Θ, identifies conditional independencies. For variables    and   , the 

partial correlation coefficient is: 

     
   

√      
         

Here,     is the off-diagonal element of Θ. A zero value for     implies    and    

are conditionally independent. 
It forms the backbone of the GGM and was critical for understanding conditional 
dependencies such as the strong influence of Toss Decisions on Results at neutral 
and away venues. 
 
Regularization 
Regularization minimizes over fitting in network estimation. In Graphical Lasso, 
the optimization problem for the precision matrix Θ is: 

 ̂      
   
 

[trace (ΣΘ – log det (Θ) +λ    ]…… (15) 

Where λ is the penalty term controlling sparsity. This ensures only significant 
edges are retained. 
 
Results and Discussion 
Table 2 summarizes the Bayesian Network structure derived using the Gaussian 
Graphical Model (GGM) approach for analyzing venue-wise effects on T20I 
cricket outcomes, where venue levels are encoded as 1 (home), 0 (neutral), and -1 
(away). Each network corresponds to one venue scenario, with 8 nodes 
representing variables (e.g., Pitch Conditions, Match Conditions, Batting Order, 
etc.). 
 
   Table 2: Venue wise summary of network for factor affecting high run chase  

 
The total possible connections (edges) between nodes is 28, calculated based on 
the undirected network structure (n (n−1)/2n (n-1)/2n (n−1)/2 where n=8n = 
8n=8). For the home venue (1), the network has 12 non-zero edges with a 
sparsity of 0.571, indicating fewer connections and a more selective dependency 
structure. The neutral venue (0) network has 13 edges and a sparsity of 0.536, 
slightly denser than the home network. In contrast, the away venue (-1) network 
has the most connections (14 edges) and the lowest sparsity (0.500), suggesting 
that away matches exhibit the most complex interdependencies among variables. 
These differences in sparsity reflect how venue impacts the dependency structure 
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of variables, with home conditions potentially simplifying dependencies, while 
away matches demand a more nuanced interplay among factors. This analysis 
highlights how the venue influences the probabilistic relationships between 
variables, aiding in venue-specific decision-making in cricket analytics. 
Table 3 presents the Edge Evidence Probability for Bayesian Network analysis 
using the Gaussian Graphical Model (GGM) approach, broken down by venue 
conditions: -1 (away), 0 (neutral), and 1 (home). Each cell represents the 
probability of an edge (dependency) existing between two variables based on the 
GGM framework. The variables include Batting Order (BO), Match Condition 
(MC), Toss Outcome (TO), Toss Decision (TD), Pitch Conditions (PC), Ranking 
of Teams (RoT), Opponent Team Ranking (Ropp), and Result (R). High 
probabilities (close to 1) indicate a strong dependency between variables, while 
lower probabilities (closer to 0) suggest weaker or negligible relationships. 
 
Table 3: Venue wise edge evidence probability for factor affecting high run chase  

For away matches (-1), there is strong evidence for dependencies between Toss 
Decision (TD) and both Toss Outcome (TO) (1.000) and Result (R) (1.000), 
emphasizing their critical role in away games. In contrast, Pitch Conditions (PC) 
shows weaker connections with other variables (e.g., BO-PC = 0.030). In neutral 
venue (0) conditions, relationships such as Toss Decision (TD) and Result (R) 
(1.000) persist strongly, while variables like Batting Order (BO) exhibit moderate 
connections across factors. For home matches (1), dependencies become more 
selective, with fewer strong connections (e.g., PC-R = 0.160 and BO-R = 0.140), 
indicating a simplified network structure. 
The comparative analysis across venue conditions highlights that away matches 
exhibit the most interconnected relationships (denser dependencies), neutral 
venues show intermediate dependency levels, and home matches have fewer and 
more streamlined dependencies. These findings suggest that external factors like 
venue conditions significantly influence the probabilistic relationships among 
variables, with away games requiring greater adaptation due to complex 
interdependencies. 
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Network Plots 
Away Venue 
The network plot for the away venue in Figure 1 highlights the probabilistic 
relationships between key variables influencing T20I cricket outcomes. Strong 
dependencies are observed between Toss Outcome (TO), Toss Decision (TD), and 
Result (R), underscoring the importance of toss-related decisions in home 
games. The Ranking of Opponent (Ropp) also exhibits a significant connection 
with Result (R), emphasizing the impact of opposition strength even on familiar 
grounds. Pitch Conditions (PC) show moderate influence, linking both to Result 
(R) and Toss Decision (TD), suggesting that teams utilize pitch familiarity to 
strategize effectively. 

 
      Figure 1: Network Plot for factors affecting high run chase at away venue                                  
 
Batting Order (BO) moderately connects with both Result (R) and Toss 
Outcomes (TO), reflecting the importance of team composition in home matches. 
Weaker relationships, such as those involving Match Conditions (MC), indicate 
that external factors like day/night settings have a minimal effect on home-
ground performance. Overall, the network structure demonstrates a relatively 
simplified dependency pattern at home; with teams leveraging controllable 
factors like toss decisions and pitches familiarity to optimize outcomes, while 
opposition strength remains a critical determinant of success. 
 
Neutral Venue 
The network plot for the neutral venue in Figure 2 depicts a more balanced 
dependency structure among variables affecting T20I cricket outcomes. A strong 
relationship persists between Toss Outcome (TO) and Toss Decision (TD), 
highlighting the strategic importance of toss decisions in neutral conditions. Toss 
Decision (TD) also connects significantly with Result (R), emphasizing its role in 
determining match outcomes. Pitch Conditions (PC) show notable connections 
with both Toss Decision (TD) and Result (R), indicating that pitch characteristics 
play a crucial role in neutral venues where teams lack a home-ground advantage. 
The Ranking of Opponent (Ropp) has a moderate link to Result (R), reflecting 
the influence of opposition strength. 
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Figure 2: Network Plot for factors affecting high run chase at neutral venue                                  
 
Meanwhile, Batting Order (BO) exhibits weaker connections, suggesting its 
reduced impact compared to other factors. Similarly, Match Conditions (MC) 
plays a minimal role in influencing outcomes. Overall, the neutral venue network 
reflects a scenario where strategy, especially around toss decisions and 
adaptability to pitch conditions, becomes pivotal, as neither team benefits from 
familiarity with the playing environment. 
 
Home Venue 
The network plot for the home venue in Figure 3 highlights the relationships 
between factors influencing T20I cricket outcomes when teams play at an away 
venue. Key variables such as Batting Order (BO), Match Condition (MC), Toss 
Outcomes (TO), Toss Decision (TD), Pitch Condition (PC), team rankings (RoT 
and Ropp), and Result (R) are interconnected. 

 
      Figure 3: Network Plot for factors affecting high run chase at home venue                               
 
The strength of these relationships is represented by the thickness and color of 
the edges, with stronger connections like BO-TO. The plot indicates that away 
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venue outcomes are influenced by a combination of toss-related decisions, pitch 
conditions, and team rankings, showcasing the complexity of dependencies in 
away matches. The crossed lines in the plot are purely visual artifacts and do not 
impact the interpretation of the relationships. 
 
Posterior Probability Structure Plots 
The posterior probability plot for the away venue in Figure 4 depicts the 
posterior structure probabilities for various models, ranked by their structure 
index. The y-axis represents the posterior structure probability, while the x-axis 
represents the structure index. The plot shows a steep decline in posterior 
probabilities, with a few structures having relatively higher probabilities (above 
0.02) and the majority having near-zero values.  
 

 
                Figure 4: Posterior probability structure plot for away venue 
 
This suggests that only a small subset of models significantly contribute to 
explaining the variability in outcomes for away venues, while most structures are 
less influential. The diminishing probabilities across the structure index highlight 
the dominance of a few key model structures in capturing the underlying 
patterns at away venues. 
The posterior probability structure plot for neutral venue in Figure 5 illustrates 
the distribution of posterior probabilities across various structure indices. The y-
axis represents the posterior structure probability, while the x-axis denotes the 
structure index. The plot reveals that only a small number of structures exhibit 
relatively higher probabilities, with the largest values concentrated near the 
lower structure indices (e.g., below index 50).  
As the structure index increases, the probabilities rapidly decline and approach 
zero, indicating that the majority of structures contribute minimally to 
explaining the data. This distribution highlights that a few key models are highly 
influential in capturing the patterns, while the rest have negligible impact. 
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                      Figure 5: Posterior probability structure plot for neutral venue 
 
The sharp decay emphasizes the sparsity of significant structures in the overall 
analysis. 
The posterior structure probability plot in Figure 6 illustrates the probability 
distribution of structural indices for a given model or dataset. The x-axis 
represents the "Structure Index," likely indicating different model structures or 
configurations, while the y-axis shows the corresponding "Posterior Structure 
Probability," which reflects the likelihood or credibility of each structure given 
the data. The curve starts with relatively higher probabilities for lower indices, 
then sharply decreases and flattens out as the index increases, indicating that a 
small number of structures dominate the posterior probability distribution.  
This suggests that only a few structures are strongly supported by the data, while 
the rest have negligible probabilities, pointing to a concentration of posterior 
evidence on simpler or fewer models. 
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                    Figure 6: Posterior probability structure plot for home venue 
 
This behavior is consistent with a Bayesian framework that penalizes complexity 
while favoring parsimonious models. 
Table 4 summarizes centrality measures for each variable in a network analysis 
across three levels (-1, 0, 1), including Betweenness, Closeness, Strength, and 
Expected Influence. Betweenness highlights a variable's role as an intermediary 
in the network, with "TO" (Toss Outcome) and "PC" (Pitch Condition) showing 
notable bridging importance, especially at level -1. Closeness, which reflects the 
accessibility of a variable to others, is high for "MC" (Match Condition) and "PC" 
in categories 0 and 1, indicating their prominence in spreading influence. 
Strength, measuring the direct impact of variables, is consistently high for "R" 
(Result) across all levels, emphasizing its central role in the network. Finally, 
Expected Influence, which considers both positive and negative connections, 
further underscores "R" as the most influential variable, with "TO" and "PC" also 
exhibiting strong influences at certain levels. This analysis identifies "R," "PC," 
and "TO" as the most critical variables shaping the network dynamics. 
 
        Table 4: Venue wise centrality measure for factor affecting high run chase 
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Centrality Plot 
The centrality plot in Figure 7 depicts the relative importance and influence of 
various factors (Ropp, RoT, PC, TD, TO, MC, BO, R) across four centrality 
measures: Closeness, Betweenness, Strength, and Expected Influence, stratified 
by three venue levels (Vn: -1, 0, 1). Each measure captures a different aspect of 
factor connectivity or influence within the system. For instance, Closeness shows 
that certain factors (e.g., Ropp, RoT) have higher accessibility or direct influence 
across venue levels, with clear variations in magnitude. Betweenness centrality 
reveals differences in the mediating roles of factors, with some showing notable 
separation among venue levels, suggesting their varying ability to bridge other 
factors.  

      Figure 7: Venue wise centrality plot for high run chase in T20I cricket 
 
Strength centrality indicates the cumulative influence of factors, with distinct 
trends observed for venue levels, emphasizing how their impact differs. Expected 
Influence aligns with these patterns, showcasing the overall effect of each factor 
on the network. The plot highlights the dynamic role of factors depending on the 
venue, emphasizing the complexity of their interactions. 
 
Complexity plots 
The complexity plot in Figure 8 illustrates the relationship between the number 
of edges in a network and the corresponding posterior probabilities for an "away" 
venue. The x-axis represents the number of edges (a measure of network 
complexity), while the y-axis shows the posterior probability of these 
configurations. The plot reveals that the posterior probability increases with the 
number of edges initially, peaking at around 15 or 16 edges, and then declines as 
the network becomes more complex (17 or 18 edges). This suggests that 
moderately complex network structures (with 15–16 edges) are most supported 
by the data, likely balancing model complexity and fit.  
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                 Figure 8:  Away venue Complexity plot posterior probability  
 
The drop in probability for higher edge counts indicates diminishing returns in 
explanatory power as the network becomes overly complex, possibly reflecting 
over fitting. This pattern underscores the importance of parsimony in network 
modeling for the "away" venue. 
The complexity plot in Figure 9 for neutral venue shows the relationship between 
the number of edges in the model and its posterior probability for a neutral 
venue. The posterior probability increases as the number of edges rises from 12 
to 16, indicating that adding complexity improves the model’s fit up to this point. 
  

 
             Figure 9: Neutral venue complexity plot for posterior probability  
 
However, beyond 16 edges, the posterior probability decreases, suggesting over 
fitting as the model becomes overly complex. The peak at 16 edges indicates the 
optimal model complexity, balancing fit and simplicity, making it the best choice 
for modeling neutral venue conditions effectively. 
The complexity plot in Figure 10 for home venue illustrates the relationship 
between the number of edges in the model and its posterior probability for a 
home venue. The posterior probability rises steadily from 12 to 16 edges, 
indicating that increased model complexity enhances its fit to the data up to this 
point. However, beyond 16 edges, the posterior probability declines, suggesting 
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that additional complexity leads to over fitting and reduces the model's 
effectiveness. The peak posterior probability at 16 edges highlights this as the 
optimal model complexity for capturing the key relationships while maintaining 
generalizability for home venue scenarios. 
 

               Figure 10:  Home venue Complexity plot for posterior probability  
 
Conclusion  
This study analyzed the factors affecting high run chases in T20I cricket through 
Bayesian Networks (BNs) constructed using Gaussian Graphical Models (GGMs) 
across home, neutral, and away venues. The results highlighted the significant 
influence of venue conditions on probabilistic dependencies among variables, 
with away matches displaying the most complex interdependencies and home 
matches the simplest, reflecting varying strategic requirements. Toss Outcome 
(TO), Toss Decision (TD), and Pitch Conditions (PC) emerged as critical factors, 
with Result (R) consistently identified as the central determinant of match 
outcomes. 
The analysis established that networks with 16 edges provided optimal 
complexity, achieving a balance between model accuracy and interpretability. 
Venue-specific differences were evident, with denser dependencies at away 
venues demanding greater adaptability and neutral venues emphasizing balanced 
strategies. Sparsity ensured the models remained interpretable, focusing on the 
most impactful relationships. Posterior probabilities validated the reliability of 
the models, confirming their suitability for predictive and strategic insights. 
These findings underscore the importance of tailoring strategies to venue-
specific dynamics in T20 cricket, particularly for optimizing high run chases. The 
integration of GGM-based BNs provides a robust, interpretable framework for 
cricket analytics, offering actionable insights for teams and decision-makers. 
Future research should expand this approach to include player-specific metrics, 
weather conditions, and other contextual factors to further refine predictions and 
strategies across different cricket formats. 
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