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Abstract 
This study investigates the use of Multi-Layer Perceptrons (MLPs) to predict ball-specific 
outcomes in cricket matches, focusing on wicket-taking deliveries and extras across the six 
balls in an over. The data, sourced from reputable cricket databases such as ESPN Cricinfo 
and Cricsheet, revealed key patterns of wicket and extra distributions, with Ball 5 showing 
the highest proportion of wickets and Ball 4 the highest proportion of extras. However, the 
MLP model, despite its potential to capture non-linear relationships, demonstrated 
significant challenges in achieving high predictive accuracy. While it performed best for 
Class 6, the overall accuracy remained low, with poor performance observed across most 
classes, indicating issues like class imbalance and insufficient feature representation. The 
model’s discriminative power was limited, as reflected in the ROC curves and cumulative 
gain and lift charts, suggesting a need for improvements in model architecture and feature 
engineering. The study highlights the importance of integrating ball-specific patterns into 
predictive models for cricket match outcomes, and suggests that exploring alternative 
machine learning algorithms, such as Random Forests or XGBoost, could lead to better 
prediction accuracy. These findings provide valuable insights into improving the predictive 
capabilities of cricket data analysis models, particularly by addressing the underlying 
challenges in classifying ball-specific events. 
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Wicket-Taking Deliveries, Extras,  
 
Introduction 
Statistics plays a vital role in sports by providing objective insights to evaluate player 
performance, team dynamics, and game strategies. It enables coaches, analysts, and teams 
to make informed decisions, predict outcomes, and optimize training techniques. Key 
metrics like batting averages, shooting percentages, and player efficiency ratings offer a 
deeper understanding of both individual and team strengths and weaknesses. Advanced 
tools such as analytics and performance tracking are leveraged to analyze strategies, 
uncover patterns, and gain a competitive advantage. In today's sports landscape, statistics 
are indispensable for scouting, injury prevention, game preparation, and overall 
performance enhancement, solidifying their importance in the data-driven world of modern 
sports.  
Neural networks play a pivotal role in cricket by revolutionizing performance analysis, 
strategy development, and player management. They can analyze historical data, such as 
runs scored and player form, to predict performance, enabling coaches to make well-
informed decisions regarding team selection and tactics. Neural networks also enhance 
match outcome predictions by processing team and player statistics, providing valuable 
insights for strategic planning. Furthermore, they are instrumental in injury prevention, 
utilizing factors like workload and physical metrics to identify risks. In real-time scenarios, 
neural networks support tactical decisions, such as determining optimal field placements 
and bowling strategies, and power ball-tracking systems like Hawk-Eye to predict shot 
outcomes. By processing complex data and facilitating data-driven decisions, neural 
networks significantly enhance team performance and competitiveness in cricket. 
The Multilayer Perceptron (MLP), a form of neural network, plays a valuable role in cricket 
by improving decision-making related to wicket-taking strategies and the number of balls 
bowled in an over. By leveraging historical data, MLP can predict the most effective 
methods—such as bowled, caught, lbw, or run out—likely to result in a wicket under specific 
conditions. For instance, it can analyze variables like pitch type, player form, and bowling 
styles to suggest optimal field placements and bowling rotations, thereby increasing the 
probability of taking wickets. Moreover, MLP can assist in determining the ideal number of 
balls a bowler should deliver in an over by factoring in elements such as bowler fatigue, 
opponent tendencies, and match context. This capability helps enhance team strategy and 
performance by enabling coaches and analysts to make data-driven decisions that maximize 
wicket-taking opportunities and manage bowlers more effectively during a match. 
In this study, encompasses both wicket-taking deliveries and extras like wides and no-balls, 
each playing a pivotal role in determining the outcome of a match. Wicket-taking deliveries, 
such as those that result in a batsman being bowled, caught, or dismissed in other ways, are 
critical for breaking the batting side’s momentum. These deliveries can decisively shift the 
course of a match by removing key players at crucial moments, thereby increasing the 
fielding team’s chances of success. A bowler who consistently delivers such balls can exert 
pressure on the batsmen, prompting errors and leading to dismissals.  
Conversely, extras like wides and no-balls, though not directly contributing to wickets, can 
negatively impact a team’s performance. These deliveries not only concede easy runs but 
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also give the batsman a psychological edge, allowing them to settle without facing a valid 
delivery. No-balls, in particular, can be especially damaging when they result in free hits, 
granting the batsman a chance to score without the risk of being dismissed. Thus, while 
wicket-taking balls are vital for success, the occurrence of extras like wides and no-balls can 
undermine a bowler’s effectiveness, providing the opposition with scoring opportunities. 
The interplay between aggressive wicket-taking strategies and the need to minimize extras 
is crucial, as both factors significantly influence the dynamics and outcome of a cricket 
match. 
The use of neural networks in cricket has grown significantly in recent years, driven by the 
increasing availability of data and the desire to enhance performance analysis and decision-
making. Neural networks, particularly Multilayer Perceptron (MLP) and Recurrent Neural 
Networks (RNNs), have been applied to various aspects of cricket, ranging from player 
performance prediction to match outcome forecasting and strategy optimization. This 
literature review examines the key applications and contributions of neural networks in 
cricket. 
Pustokhina and Pustokhin (2013) employed neural networks to assess the impact of specific 
player characteristics on match outcomes, enabling coaches to make informed decisions 
about player selection and batting order. Similarly, Yordanov et al. (2018) applied neural 
networks to model and predict cricket player performance, taking into account various 
parameters such as batting positions, form, and batting technique. Srinivas and Laxmi 
(2015) developed a model using MLP to predict the probability of a wicket based on 
parameters such as bowler type, bowling speed, field placement, and batting tendencies of 
the opponent. This model helps in strategic decision-making by suggesting optimal bowling 
strategies under specific match conditions. Furthermore, neural networks can be used to 
predict the most effective bowling methods (e.g., fast bowling, spin bowling, yorkers, 
bouncers) based on match context, pitch conditions, and batting behavior. These 
predictions assist in increasing the probability of dismissals by optimizing field placements 
and bowling rotations. Raza and Hossain (2018) used artificial neural networks to predict 
the outcome of One Day International (ODI) matches, achieving high accuracy by 
incorporating a wide array of factors influencing match results. Similarly, Seneviratne et al. 
(2021) used machine learning models to predict the outcomes of T20 cricket matches, 
demonstrating the effectiveness of neural networks in analyzing complex datasets and 
providing match-winning insights. Hughes et al. (2017) explored the use of machine 
learning and neural networks to assess player workload and determine optimal training 
schedules, reducing the risk of overuse injuries. The insights provided by these models 
enable coaches and physiotherapists to adjust training loads and prevent injuries, thereby 
prolonging players' careers. Bhargava et al. (2019), the authors developed a neural network-
based system that suggested the best field placements based on the batsman’s historical 
performance data and the bowler’s behavior, increasing the likelihood of taking a wicket. 
These systems leverage neural networks to analyze vast amounts of data quickly and 
efficiently, providing real-time tactical insights during a match. Gupta et al. (2019) explored 
how machine learning and neural networks could be used to analyze bowler performance 
and suggest the ideal rotation strategy during a match. This application ensures bowlers are 
not overburdened, maintaining peak performance throughout the game. The relationship 



Dialogue Social Science Review (DSSR) 
www.thedssr.com 
 
ISSN Online: 3007-3154 
ISSN Print: 3007-3146 
 

Vol. 3 No. 1 (January) (2025)  

558  

between extras and wicket-taking deliveries and No. of ball of over is likely non-linear. 
MLPs, being a type of artificial neural network, can capture such complex, non-linear 
relationships that traditional linear models (e.g., logistic regression) might miss. MLPs are 
a powerful tool for modeling complex relationships in data and can be very effective. MLPs 
can potentially outperform simpler models. However, careful tuning, data preparation, and 
validation are necessary to achieve the best results. 
 
Methods and Materials 
Data Collection 
Data were collected from reputable sources, including the official ESPN Cricinfo website 
and other platforms like Cricsheet. Primary data were extracted for analysis consisting ball-
by-ball data. From these datasets, specific focus was given to identifying wicket-taking 
deliveries and extra deliveries, which were then used for detailed analysis. 
 
Multilayer Perceptron: 
A Multilayer Perceptron (MLP) is a type of neural network commonly used for classification 
and regression tasks. It consists of multiple layers of neurons (or nodes) where each layer is 
fully connected to the next. The MLP is a feedforward network, meaning the information 
flows from the input layer through the hidden layers to the output layer without any loops. 
In the context of your problem, MLP is used to model the relationship between features 
(such as extra deliveries and wicket-taking deliveries) and the dependent variable (number 
of balls in an over). Let’s delve deeper into the key components of MLP with a focus on the 
hyperbolic tangent activation function (tanh) and the softmax activation function. 
 
MLP Architecture 
An MLP typically consists of three types of layers: 
Input Layer: This is where data is fed into the network. Each node in this layer represents 
a feature from the input data. 
Hidden Layers: These are layers between the input and output. Each neuron in a hidden 
layer processes the input using weights and biases, and the result is passed through an 
activation function. 
Output Layer: The final layer that produces the predictions. For classification tasks, this 
layer typically has one node per class, and the values represent the probabilities of each 
class.  (Goodfellow, I et.al, 2016) 
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Hyperbolic Tangent (tanh) Activation Function 
Definition: The hyperbolic tangent (tanh) function is a commonly used activation function 
in the hidden layers of neural networks. It transforms the input signal (a weighted sum of 
the input features) into an output in the range of -1 to 1. 
 
Mathematically, the tanh function is given by: 
 

   ( )    
         

         
     ___________________(1) 

 
Role in MLP 
The tanh function introduces non-linearity to the model, allowing the network to learn 
complex patterns and relationships in the data. Without non-linearity, the network would 
essentially behave as a linear model, no matter how many layers it has. 
It maps any input value to a range between -1 and 1, which helps in normalizing the output 
and ensuring stability during training. 
In the context of MLP, the tanh activation function helps neurons in the hidden layers 
capture complex relationships between input features (such as extra deliveries and wicket-
taking deliveries) and the target variable which the number of balls within the over.  
(Nielsen, M. (2015). 
 
Softmax Activation Function 
Definition: The softmax function is typically used in the output layer of a neural network for 
classification problems. It converts the raw output scores (logits) of the network into 
probabilities, ensuring that the outputs sum to 1, making them interpretable as 
probabilities for each class. (LeCun, Y, et.al. 2015) 
Mathematically, the softmax function for a given output 
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Where yi is the raw score (logit) for ith class and the denominator sums over all the classes. 
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Role in MLP 
Softmax is used to calculate the probabilities of each class. In classification problems, each 
class is assigned a probability, and the class with the highest probability is chosen as the 
predicted output. 
In this study, the output could represent the predicted number of balls in an over, where 
each possible number of balls (like 1, 2, 3, etc.) is a class. 
The softmax function ensures that the output values lie in the range [0, 1] and sum to 1, 
providing a clear probabilistic interpretation of the network’s predictions.  
 
Results and Discussions 

 

 
Figure no.1: Wickets vs Ball No. 

 
Figure no.2: Extras vs Ball No. 

 
The figure no.1 illustrates the distribution of wickets across six ball categories in an over, 
labeled as Ball 1 to Ball 6. The second pie chart shows the distribution of extras (additional 
runs given by the bowling team) across the same six ball categories. Both charts reveal the 
relative frequency of these occurrences during each ball in an over. the distribution is fairly 
balanced, with the proportion of wickets varying between 15.63% and 17.40%. The highest 
proportion is observed on Ball 5, accounting for 17.40% of the total wickets, with 4,115 
wickets recorded. In contrast, the lowest proportion is on Ball 3, with 15.63% of the total, 
representing 3,696 wickets. The remaining balls show similar proportions, ranging between 
16.56% and 16.95%, indicating that wickets tend to fall consistently throughout the over, 
with a slight peak on Ball 5. While the figure no.2, the extras chart, the distribution is 
slightly more varied. Ball 4 has the highest proportion of extras, accounting for 18.52% of 
the total, with 4,692 extras recorded. The lowest proportion is on Ball 1, contributing 
15.27% with 3,868 extras. The other balls display percentages ranging from 15.96% to 
16.77%, suggesting a relatively even distribution of extras across the over, with Ball 4 
standing out as a notable exception. Comparing both, it is evident that Ball 5 shows the 
highest proportion of wickets, while Ball 4 shows the highest proportion of extras. 
Interestingly, the percentages for Ball 6 in both charts are identical at 16.77%, indicating a 
similar frequency of both wickets and extras on the final ball of an over. Overall, both charts 
suggest that the distribution of wickets and extras is relatively consistent across the over, 
with minor fluctuations on specific balls. These findings may indicate that certain balls 
within an over are more likely to result in critical events such as wickets or extras, which 
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could have implications for predictive modeling in cricket. The analysis of the two charts 
highlights patterns in the occurrence of wickets and extras across different balls in an over. 
The higher frequency of wickets on Ball 5 and extras on Ball 4 suggests that these deliveries 
may be crucial moments in the game. Incorporating these insights into predictive models 
could improve match outcome predictions by accounting for the likelihood of key events 
occurring on specific balls within an over. The results also shown in table No.1. 
 

 Table No.1: Wickets and Extras VS No. of Ball 

 

Wickets Distribution Extras Distribution 

Frequency Percent Frequency Percent 

Ball 1 3696 15.6 4692 18.5 

2 4007 16.9 4246 16.8 

3 4115 17.4 4239 16.7 

4 3966 16.8 4249 16.8 

5 3948 16.7 4043 16.0 

6 3915 16.6 3868 15.3 

Total 23647 100.0 25337 100.0 
 
 
 
 
 
 
 
 
 

Table no. 2 Classification 

Sample Observed 

Predicted 

1 2 3 4 5 6 
Percent 
Correct 

Trainin
g 

1 25 729 967 349 19 540 1.0% 

2 25 837 980 423 16 529 29.8% 

3 32 818 990 385 27 576 35.0% 

4 20 818 944 381 16 579 13.8% 

5 26 786 930 370 18 604 0.7% 

6 32 689 839 400 23 743 27.3% 

Overall Percent 
1.0% 

28.4
% 

34.3% 14.0% 0.7% 21.7% 18.2% 
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Testing 1 9 311 387 124 8 228 0.8% 

2 9 348 409 163 9 259 29.1% 

3 3 395 460 170 10 249 35.7% 

4 7 315 442 165 7 272 13.7% 

5 7 335 409 175 13 275 1.1% 

6 11 292 415 151 11 309 26.0% 

Overall Percent 0.6% 27.9% 35.2% 13.2% 0.8% 22.2% 18.2% 

Dependent Variable: Ball 
 
The table no.2 presents the results of a classification analysis, likely conducted using a 
machine learning model such as a Multilayer Perceptron (MLP), to predict the "Dependent 
Variable: Ball" based on observed and predicted classifications. The analysis is divided into 
training and testing phases and evaluates the model's accuracy across six distinct classes, 
labeled from 1 to 6. For the training dataset, the table shows the observed values (ground 
truth), the predicted classifications for each class, and the percentage of correct predictions 
for each category. The performance varies significantly across classes, with Class 3 
achieving the highest prediction accuracy at 35.0%, while Class 1 records a low accuracy of 
only 1.0%. Overall, the model's training accuracy across all classes is 18.2%, which indicates 
a general struggle to effectively learn and classify the data. 
In the testing phase, the model’s performance follows a similar pattern. Class 3 again shows 
the highest accuracy at 35.7%, while Class 1 achieves only 0.8%. The overall testing accuracy 
across all classes is again 18.2%, highlighting that the model's ability to generalize to unseen 
data remains weak. The model seems biased toward certain classes, such as Class 3 and 
Class 2, while struggling with others like Class 1 and Class 5, suggesting a potential issue 
with class imbalance in the dataset or insufficient feature representation. The low overall 
accuracy of 18.2% in both training and testing phases indicates that the model has 
significant limitations in identifying meaningful patterns or handling the complexity of the 
task. This disparity in performance across classes may point to an imbalance in the dataset, 
where some classes are overrepresented compared to others. To address these challenges, 
several improvements can be implemented, including balancing the dataset through 
techniques like oversampling or under sampling, introducing class-weighted loss functions, 
enhancing the quality of features through better feature engineering, and fine-tuning the 
model's architecture and hyper parameters. Additionally, exploring alternative algorithms 
such as ensemble methods like Random Forests or XG Boost may yield better results for 
this task. Overall, the analysis highlights the model's current limitations and provides a 
baseline for further refinements in cricket data classification. 
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Figure no. 3 applied neural network for Ball of the over by method of wicket 
loss with 8 neurons at the hidden layer. 
Figure no.3 represents a neural network visualization designed to analyze factors impacting 
cricket innings, specifically focusing on wicket-taking methods and the balls in an over. The 
network comprises three distinct layers: an input layer, a hidden layer, and an output layer.  
The input layer includes variables that capture different methods of dismissal, such as 
"bowled," "caught," "lbw," "stumped," and other possible ways a batter can get out, 
alongside contextual information like the total runs scored in the innings. Another set of 
inputs corresponds to specific balls in an over (Ball 1 through Ball 6), representing delivery-
specific data. The hidden layer includes seven neurons (H(1:1) to H(1:7)), where the 
weighted connections from the input layer converge. These neurons process the input data 
by applying transformations based on synaptic weights and bias values. The figure shows 
both positive (dark blue) and negative (light gray) synaptic weights connecting inputs to 
hidden layer neurons, highlighting how different inputs influence these neurons differently. 
The output layer maps processed data to the ball-by-ball outcomes. For instance, each ball 
in an over is modeled as a potential result of various dismissal methods and the scoring 
progression. The network's design indicates a goal to predict or analyze how specific inputs 
(dismissals and ball-by-ball details) influence outputs like scoring patterns or dismissal 
likelihood. Overall, this visualization highlights the use of a neural network to model 
complex relationships between cricket-specific variables, particularly focusing on how 
dismissal methods and balls in an over contribute to innings outcomes. It demonstrates the 
structured approach of machine learning in identifying patterns and key influences in 
cricket data. 
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Figure no.4: Predicted Pseudo-Probability chart of balls for wickets 
The Figure no.4 illustrates the distribution of predicted pseudo-probabilities for different 
classes (1 to 6) across six balls in an over. The y-axis represents the predicted pseudo-
probability values, which range from 0 to 0.30, while the x-axis corresponds to the six balls 
in the over. Each class, represented by a unique color (e.g., blue for class 1, green for class 2, 
and so on), has its pseudo-probabilities displayed using box plots for each ball. These box 
plots highlight the variability and central tendencies in the predictions across multiple 
observations.  
Class 6, represented in red, consistently exhibits the highest pseudo-probabilities across all 
six balls. This is evident from the concentration of red points toward the upper end of the 
scale, particularly above the 0.25 mark. Additionally, several outliers for class 6 extend even 
higher, as indicated by red stars, showing instances where the model predicts this class with 
extremely high confidence. In contrast, the other classes, such as classes 1, 2, and 3, display 
much lower pseudo-probabilities. Their box plots are narrower, and their medians are 
closer to the lower end of the y-axis, indicating the model's weaker confidence in predicting 
these classes. 
Interestingly, the predicted pseudo-probabilities for most classes show a consistent pattern 
across the six balls, with no significant shifts in the distributions between balls. This 
suggests that the model's predictions for each class remain stable throughout the over. 
However, the wide range of pseudo-probabilities within certain classes, as indicated by the 
spread of the box plots, reflects variability in the model's confidence across different 
instances. 
Overall, the graph provides insights into the model's prediction tendencies, with class 6 
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being the dominant and most confidently predicted class, while other classes, particularly 
classes 1, 2, and 3, are associated with lower pseudo-probabilities. This distribution 
suggests potential bias in the model or an imbalance in the underlying dataset, warranting 
further investigation to improve prediction accuracy and reliability. 

 
Figure no.5: Receiver Operating Curve (ROC) of balls for wickets 
The Figure no.5 presents Receiver Operating Characteristic (ROC) curves for the 
classification of the dependent variable "Ball," with each class (1 to 6) represented by 
distinct curves. The x-axis denotes "1 - Specificity" (false positive rate), while the y-axis 
represents "Sensitivity" (true positive rate). The diagonal line serves as the reference line, 
indicating random classification performance. Ideally, an effective classifier should have 
curves that deviate significantly from the diagonal and move toward the upper left corner, 
reflecting higher sensitivity and lower false positive rates. Class 6, represented by the red 
curve, demonstrates the greatest deviation from the diagonal, indicating relatively better 
performance compared to other classes. This suggests the model is more accurate in 
predicting this class, as it achieves higher sensitivity for a given false positive rate. On the 
other hand, the curves for classes 1, 2, 3, 4, and 5 are closer to the diagonal, reflecting 
suboptimal classification performance. These classes do not exhibit significant 
improvement over random chance, as their sensitivity values remain lower at comparable 
levels of specificity. The overall proximity of most ROC curves to the diagonal implies that 
the model struggles to distinguish between classes effectively. This could indicate a 
limitation in the predictive power of the features used, insufficient training data, or 
potential overlap in the characteristics of the classes. The performance disparity between 
class 6 and the other classes may highlight data imbalances, where class 6 is either 
overrepresented or more distinct in the dataset, enabling the model to classify it more 
accurately. In summary, the ROC curves reveal that the model achieves moderate success in 
predicting class 6 while performing poorly for the other classes. This highlights the need for 
further model refinement, such as rebalancing the dataset, feature engineering, or 
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employing alternative algorithms, to improve the classification accuracy across all classes. 
 

 
Figure No.6: Cumulative Gain Chart of balls for wickets 
The figure no.6 illustrates the cumulative gain for the dependent variable "Ball" across 
six segments or models, represented by different colors. The x-axis denotes the percentage 
of the data (from 0% to 100%), while the y-axis shows the cumulative gain in percentage. 
The diagonal line (45-degree) represents the baseline or random performance. Any line 
above this diagonal indicates that the corresponding model outperforms random selection. 
The six models (1 to 6) have nearly overlapping curves, suggesting comparable performance 
across all models. This alignment indicates that none of the models significantly 
outperforms the others in terms of identifying the target variable effectively. The gain 
improves linearly as the percentage increases, suggesting uniform distribution of predictive 
capability across the data. 
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Figure No.7: Lift Chart of balls for wickets 
The Figure No.7 depicts the Lift Curve for the same dependent variable "Ball" and the same 
six models. The x-axis shows the percentage of data, while the y-axis represents the lift. Lift 
is a measure of the effectiveness of the model in predicting the target variable compared to 
random guessing. A lift value of 1 indicates random performance, and values above 1 signify 
better-than-random predictions. Model 6 (red curve) demonstrates the highest lift, 
particularly in the first 20% of the data, indicating it is the most effective in identifying the 
target early on. However, the lift decreases steadily and converges to 1 by 100% of the data, 
aligning with random performance at the full dataset level. The other models (1 to 5) show 
varying but generally lower lift values, with their performance nearly converging to random 
(lift = 1) by 30%–50% of the data. 
This suggests that while Model 6 provides better predictions in the initial segments, the 
predictive advantage diminishes as more data is included. Models 1–5 exhibit consistently 
lower predictive power. 

 
Table No.3. Classification 

Sampl Observed Predicted 
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e 

1 2 3 4 5 6 
Percent 
Correct 

Traini
ng 

1 2400 4 56 330 130 327 73.9% 

2 2161 0 47 268 162 353 0.0% 

3 2060 0 51 365 156 335 1.7% 

4 2039 3 51 371 156 385 12.3% 

5 1942 3 59 296 191 359 6.7% 

6 1786 1 46 350 166 334 12.4% 

Overall 
Percent 69.8% 0.1% 1.7% 11.2% 5.4% 11.8% 18.9% 

Testin
g 

1 1086 1 11 133 61 153 75.2% 

2 908 0 16 114 65 152 0.0% 

3 881 0 24 152 71 144 1.9% 

4 845 2 13 146 76 162 11.7% 

5 838 1 22 136 69 127 5.8% 

6 780 0 20 154 80 151 12.7% 

Overall 
Percent 70.3% 0.1% 1.4% 11.0% 5.6% 11.7% 19.4% 

Dependent Variable: Ball 

The Table No.3. Summarizes the performance of the neural network model on the 
dependent variable "Ball" across both the training and testing datasets. It details the 
observed and predicted frequencies for six classes (Ball=1 to Ball=6), along with the 
percentage of correct classifications for each class and the overall accuracy. In the training 
dataset, the model demonstrates varying levels of accuracy across the classes. Class 1 shows 
the highest accuracy, with 2400 instances correctly classified out of 3247, yielding an 
accuracy of 73.9%. However, misclassifications for Class 1 occur primarily in Classes 4, 5, 
and 6. In stark contrast, the model fails to classify any instances of Class 2 correctly, 
resulting in 0% accuracy for this class, with most misclassifications occurring in Classes 4, 
5, and 6. Similarly, for Class 3, only 51 out of 2967 instances are correctly classified, 
achieving a low accuracy of 1.7%, with the majority misclassified into Classes 4, 5, and 6. 
For Class 4, out of 3165 observed instances, 371 are correctly classified, giving an accuracy 
of 12.3%, with significant misclassifications into Classes 5 and 6. Class 5 records an 
accuracy of 6.7%, with 296 correctly classified instances out of 2846, and misclassifications 
spread among other classes, especially Class 6. Finally, for Class 6, 334 out of 2683 
instances are correctly classified, resulting in 12.4% accuracy, with a significant number 
misclassified as Class 4 and Class 5. Overall, the model achieves a correct classification rate 
of 18.9% on the training dataset, indicating that it struggles to distinguish certain classes, 
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particularly Classes 2, 3, and 5. 
For the testing dataset, similar trends are observed. Class 1 remains the best-performing 
class, with 1086 out of 1445 instances correctly classified, achieving an accuracy of 75.2%. 
Misclassifications for Class 1 are primarily in Classes 4, 5, and 6. For Class 2, the model 
again fails to classify any of the 1305 observed instances correctly, resulting in 0% accuracy, 
with misclassifications distributed across Classes 4, 5, and 6. For Class 3, only 24 out of 
1272 instances are correctly classified, giving an accuracy of 1.9%, with significant 
misclassification into Classes 4, 5, and 6. Class 4 records 146 correctly classified instances 
out of 1244, resulting in an accuracy of 11.7%, with most misclassifications occurring in 
Classes 5 and 6. For Class 5, the model achieves an accuracy of 5.8%, with 136 correctly 
classified instances out of 1213, and a large portion misclassified as Classes 4 and 6. Finally, 
Class 6 achieves an accuracy of 12.7%, with 154 correctly classified instances out of 1185, 
and misclassifications distributed among Classes 4 and 5. The overall classification 
accuracy for the testing dataset is 19.4%, slightly higher than the training accuracy but still 
indicative of significant challenges in distinguishing among the classes. 
Thus, Class 1 is the best-performing class in both the training and testing datasets, with 
relatively high accuracy. However, the model struggles significantly with Classes 2, 3, 5, and 
6, where classification accuracies are extremely low or even 0%. The poor performance for 
these classes may be attributed to overlapping feature distributions, class imbalances, or 
insufficient feature representation in the input data. The overall accuracy, 18.9% for 
training and 19.4% for testing, highlights the need for improvements in the model 
architecture, feature engineering, or class balance handling to enhance classification 
performance. 
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Figure no. 8 applied neural network for Ball of the over by Extras type with 8 
neurons at the hidden layer. 
The Figure no.8 represents the architecture of a neural network designed for a classification 
task where the dependent variable is "Ball," with six possible output classes (Ball=1 to 
Ball=6). The network comprises three primary components: the input layer, the hidden 
layer, and the output layer. Each layer is interconnected through synaptic weights, which 
play a vital role in determining the influence of features on the model’s predictions. The 
input layer consists of several nodes representing the predictor variables or features. 
Examples include `Extra Type=['byes', 'noballs']`, `Extra Type=['wides']`, and `Balls 
Remaining`. These features provide the data for the neural network to process and classify. 
The connections between the input and hidden layers are represented by synaptic weights, 
where positive weights (gray lines) amplify the influence of the input, and negative weights 
(blue lines) suppress it. The thickness of these lines indicates the magnitude of the weights, 
reflecting the strength of the connection. The hidden layer consists of four nodes (labeled 
H(1:1) to H(1:4)), which process the inputs through the Hyperbolic Tangent (tanh) 
activation function. This nonlinear activation function allows the network to capture 
complex relationships between the input features. Each hidden node receives input from all 
nodes in the input layer, with the combined influence determined by the respective weights. 
Additionally, a bias node is included in the hidden layer, which provides flexibility by 
adjusting the activation thresholds. The output layer contains six nodes, each 
corresponding to one class of the target variable (Ball=1 to Ball=6). The Softmax activation 
function is applied at this layer, ensuring the outputs are probabilities that sum to 1. This 
enables the network to assign a likelihood to each class and make probabilistic predictions. 
The connections between the hidden layer and the output layer also have weights that 
determine how each hidden node influences the final predictions. The inclusion of bias 
nodes in both the hidden and output layers adds flexibility, helping the network adjust for 
varying input conditions. The positive and negative weights, along with their magnitudes, 
determine how each feature impacts the model’s performance. Features like `Extra Type` 
and `Balls Remaining` are connected differently to the hidden nodes, indicating that their 
contributions vary in importance for the classification task. Overall, this neural network 
processes input features through weighted connections and activation functions, 
transforming them into probabilistic outputs for the six classes of the dependent variable 
"Ball." The architecture is optimized to learn and capture patterns in the data, ensuring 
accurate classification. 
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Figure No.9: Predicted Pseudo-Probability chart of balls for extras 
This figure no.9 shows the predicted pseudo-probabilities for different categories of the 
variable "Ball." The pseudo-probabilities for each category are distributed within a narrow 
range, suggesting consistency across all categories. The color-coded markers and boxplots 
reveal the variability within each category. The data appears uniformly distributed across 
all six levels (1 to 6), with some outliers visible. These results likely represent the 
probabilities predicted by a statistical or machine learning model for a multinomial 
outcome. 



Dialogue Social Science Review (DSSR) 
www.thedssr.com 
 
ISSN Online: 3007-3154 
ISSN Print: 3007-3146 
 

Vol. 3 No. 1 (January) (2025)  

574  

 
Figure no.10: Receiver Operating Curve (ROC) of balls for Extras 
The figure no.10 illustrates Receiver Operating Characteristic (ROC) curves for the six 
categories of "Ball." Each curve is plotted to show the trade-off between sensitivity (true 
positive rate) and specificity (false positive rate). The curves are close to the diagonal line 
(representing random guessing), indicating the model's limited discriminative ability for 
predicting each category. The proximity of all curves to the diagonal suggests a lack of 
strong predictive performance. 
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Figure no.11: Cumulative Gain Chart of balls for Extras 
The figure no.11 gain chart shows the cumulative percentage of gains across different levels 
of predicted probabilities for the six categories of "Ball." The lines for all categories closely 
follow the diagonal, representing an ideal cumulative gain distribution. This suggests the 
model does not significantly outperform random allocation when predicting the "Ball" 
variable. The consistent pattern across all categories supports the interpretation of uniform 
performance. The three graphs collectively evaluate the performance of a model predicting 
the six categories of "Ball." The pseudo-probability distributions suggest stable predictions, 
but the ROC curves and gain chart indicate limited predictive power. Specifically, the ROC 
curves' proximity to the random guess line and the gain chart's diagonal alignment suggest 
that the model lacks the ability to distinguish among the categories effectively. This 
performance could imply issues with model calibration, feature selection, or the inherent 
difficulty of the problem. 
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Figure No.12: Lift Chart of balls for Extras 
The figure no.12 obtained by applying a Multilayer Perceptron (MLP), with the ball number 
of the over as the dependent variable and the extra type as a factor, provides valuable 
insights into how different types of extras impact the prediction of ball numbers. The X-axis 
likely represents the percentage of data corresponding to each extra type, while the Y-axis 
shows the "lift," which measures how much better the model performs in predicting the ball 
number relative to a baseline model. A higher lift indicates a stronger impact of the extra 
type on the prediction. From the plot, it appears that certain types of extras, such as the one 
represented by the red line (likely indicating no-balls or wides), initially provide a 
significant lift in the prediction. This suggests that these extra types are more strongly 
associated with predicting the specific ball number at the beginning of the model's learning 
process. However, as the percentage increases and more data is incorporated, the lift tends 
to decrease across most extra types, indicating diminishing returns in terms of predictive 
power. This decline suggests that while the extras are useful in improving the model’s 
predictions early on, their influence weakens as the model trains on more data, potentially 
due to other factors becoming more dominant. Overall, the plot highlights the varying 
effectiveness of different extra types in predicting ball numbers within an over. It suggests 
that while some extra types provide a stronger impact early in the model training, this effect 
reduces as more data is processed, indicating that their contribution to predicting the 
match outcome or ball number is not sustained throughout the analysis. 
 
Conclusion 
The data for this analysis were collected from reputable cricket databases, including ESPN 
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Cricinfo and Cricsheet, focusing on ball-by-ball information. Key attention was given to 
identifying wicket-taking deliveries and extra runs to explore their patterns across different 
balls in an over. Given that the relationship between these variables and the ball number is 
likely non-linear, traditional linear models may fail to capture the underlying complexity. 
Therefore, Multi-Layer Perceptrons (MLPs), a type of artificial neural network, were 
employed due to their ability to model non-linear relationships effectively. 
This study highlights the challenges and potential of using machine learning models, 
specifically the Multilayer Perceptron (MLP), to predict ball-specific outcomes in cricket 
matches. While both wickets and extras are relatively evenly distributed across the six balls 
in an over, with Ball 5 having the highest proportion of wickets and Ball 4 the highest 
proportion of extras, the MLP model struggled to achieve high predictive accuracy. The 
model's overall low accuracy, combined with significant performance discrepancies across 
different classes, points to issues such as class imbalance and insufficient feature 
representation. Despite performing best for Class 6, the model showed limited ability to 
distinguish between other classes, as reflected in the ROC curves and cumulative gain and 
lift charts. This suggests a decline in predictive performance as more data is included. To 
improve the model’s efficacy, addressing class imbalances, enhancing feature engineering, 
and refining the model’s architecture are essential. Exploring alternative algorithms, such 
as Random Forests or XGBoost, could further enhance prediction accuracy. Overall, the 
study underscores the importance of incorporating ball-specific patterns into predictive 
models to better forecast match outcomes and suggests avenues for improving classification 
accuracy in cricket data analysis. 
The study provides a detailed analysis of a neural network model used for classifying the 
dependent variable "Ball" into six output classes. Despite achieving high accuracy for Class 
1, the model's overall performance is limited, with particularly poor accuracy for Classes 2, 
3, 5, and 6. This is reflected in the low overall accuracy rates for both the training and 
testing datasets, and the model's inability to differentiate effectively between the classes. 
The architecture of the neural network, including the input layer, hidden layer, and output 
layer, incorporates important predictor variables and uses a well-structured design for 
classification. However, the model's weak discriminative ability is evident in the narrow 
pseudo-probability distributions, as well as the ROC curves, which suggest random 
guessing. Additionally, the cumulative gain and lift charts demonstrate that the model 
offers limited predictive power, with diminishing returns from certain features like extras. 
These findings indicate potential issues with overlapping feature distributions, class 
imbalances, or inadequate feature representation. To improve the model's accuracy, further 
optimization is needed, including enhancing model architecture, feature engineering, and 
addressing class imbalances. Ultimately, while the current model shows some promise for 
Class 1 prediction, it requires substantial improvements to effectively classify all six classes 
of the dependent variable "Ball." 
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