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Abstract 
The development of machine learning (ML) and artificial intelligence (AI) has 
elevated scientific research and studies, including physics, to new levels. the 
creation of animated visual simulations of the physical processes under study, 
powered by machine learning and neural network algorithms, which transform 
abstract theories and equations into clear and captivating visual representations of 
those phenomena. This paper aims to show how computational models can bridge 
the gap between the practical, educational uses of theoretical physics and its pure 
form. The simulation deals with solving and displaying the time-independent 
Schrödinger equation are presented in this study. This tool makes it easy to 
comprehend quantum behavior in constrained systems by showing potential wells, 
energy levels, and wave functions. Through the integration of mathematical 
datasets and physical limitations into a Python-based framework, this simulation 
employed machine learning and neural networks to handle massive amounts of 
data and solve intricate, mathematically stated equations that were previously 
believed to be beyond computing. By integrating physics-informed neural 
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networks (PINNs), machine learning algorithms were utilized to solve the wave 
equation numerically for the Schrödinger equation simulation, providing a precise 
depiction of the quantum states. 
 
Keywords: Neural Network in Physics, Machine Learning, Deep Learning, 
Quantum Mechanics, Artificial Intelligence. 
 
Introduction 
The most recent technologies for simulating and processing massive amounts of 
data and accurately solving intricate, mathematically specified equations are 
machine learning (ML) and neural networks (NN) [1, 2, 3]. Neural network feed 
forward and convolution architectures were employed to anticipate behavior based 
on input parameters and to approximate solutions [4,5]. Artificial intelligence (AI) 
and its models are becoming more and more prevalent in practically every aspect 
of life [6,7,8,9]. Through the integration of physical restrictions and mathematical 
datasets into a Python-based framework, these models made it possible to depict 
phenomena dynamically. 
The basis for applying machine learning to physics is still supervised and 
unsupervised learning. CNN has been used, for example, to categorize phase 
transitions in physical systems [10]. In fact, it outperforms the conventional Monte 
Carlo approaches in terms of accuracy and performance [11, 12]. Similarly, it has 
been demonstrated that the use of deep reinforcement learning to improve 
quantum control protocols can solve optimization problems in quantum 
mechanics. Another review explores the evolution of machine learning in physics 
through dropout and regulation strategies that will help to enhance physics 
models. Effective methods that support the modeling of complex systems include 
random forests, neural networks, and cross validation. [13]. Computational 
techniques for comprehending and simulating complex systems have been 
transformed by the convergence of physics and machine learning. In any field, 
machine learning technologies have become strong substitutes for conventional 
numerical methods, providing both efficiency and novel insights [14]. 
 
Role of Physics Informed Machine Learning (PIML) 
In the PIML framework, neural networks are trained and their architecture is 
influenced by physical rules to improve prediction in dynamic systems. In order to 
achieve strong generalization across datasets, sophisticated models take advantage 
of symmetry restrictions.  
PDEs and BCs are incorporated into ML models via PIML. While PIML 
incorporates the knowledge of physical restrictions directly into the model design, 
standard techniques consider data as separate entities. As demonstrated by 
applications in fluid dynamics, structural mechanics, and plasma physics, this 
allows for reasonably accurate predictions with small amounts of data [13,15,16]. 
For instance, in the multi-physics problem, PIML may concurrently address 
stochastic processes and coupled systems [17]. In the meantime, it can effectively 
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increase its generalization capability for different datasets by implementing 
symmetry restrictions such translation invariance [18]. 
The simulations' accuracy, scalability, and adaptability for educational purposes 
are guaranteed using machine learning and neural networks. Machine learning 
models are set to become increasingly significant in quantum physics and 
education as they get more sophisticated. It is anticipated that hybrid models that 
combine data-driven methodologies with limitations guided by physics would 
further enhance accuracy and interpretability. Furthermore, it is anticipated that 
developments in AI and quantum computing would enable simulations of hitherto 
unheard-of complexity, changing physics research and teaching [7,19]. 
Neural networks and machine learning have revolutionized physics by enabling the 
modeling of intricate systems and ideas that were previously thought to be 
incomprehensible. In order to simulate the Schrödinger equation, machine 
learning algorithms were utilized to numerically solve the wave equation while 
accurately visualizing the quantum states. Accuracy and interpretability were 
provided by the simulation's adherence to the fundamental laws regulating the 
system through the use of PINNs [11]. 
 
Role of Quantum Machine Learning (QML) 
The intersection of quantum computing and traditional machine learning (CML) 
approaches is known as QML. Quantum neural networks and other hybrid 
quantum-classical models use quantum algorithms to handle issues that are 
beyond the scope of classical methods [10]. Applications of QML include error 
correction, quantum dynamics simulation, and quantum state tomography [20]. 
ML is useful in quantum physics for applications like quantum error correction 
and state tomography. In particular, QNNs show promise in bridging the gap 
between quantum hardware and classical algorithms. 
Despite these advancements, there are still obstacles in applying machine learning 
to real-world situations, which calls for further study on adaptable algorithms and 
interdisciplinary approaches [11]. The creation of quantum-enhanced 
unsupervised learning for the identification of quantum states and the 
optimization of their representation in classical-quantum hybrid systems is one 
example. Certain computational barriers for quantum technology may be resolved 
by such advancements [20,21]. Quantum many body states with substantial 
entanglement are demonstrated to outperform conventional tensor-network 
techniques using restricted Boltzmann machines (RBMs). The paper demonstrates 
how an RBM may effectively bridge machine learning and quantum physics by 
simulating quantum systems through reinforcement learning [20]. This led to the 
conclusion that neural networks are a useful tool for solving challenging quantum 
problems that might not be solved conventionally. 
 
Role of Neural Networks in Quantum Physics  
In quantum many-body physics, machine learning, particularly with restricted 
Boltzmann machines (RBMs) [20], can represent quantum many-body states and 
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their entanglement features. Additionally, the work demonstrates that random 
RBM states have distinct spectrum features that differ from normal random pure 
state entanglement. Because of the intricate correlations in the wave function, the 
many-body issue in quantum physics is difficult. Using a variant representation of 
quantum states with neural networks, machine learning can reduce this complexity 
[21]. 
Another strategy is the application of reinforcement techniques, which have been 
shown to be effective in resolving challenging quantum mechanical issues [22]. 
Deep reinforcement learning is used to improve quantum control protocols in 
order to achieve this. 
 In quantum physics, reinforcement learning (RL) has proven a game-changer, 
particularly for modeling time evolution in quantum systems and finding ground 
states. For the equilibrium and dynamic features of one- and two-dimensional spin 
models, RL models have advanced to the state-of-the-art level through the 
exploration of ideal configurations and tactics [23]. Understanding phenomena 
like phase transitions and quantum entanglement requires the use of such 
applications. 
A class of machine learning methods known as PINNs naturally incorporates the 
underlying physical rules into the model's training process in order to solve PDEs. 
In contrast to conventional numerical solvers, PINNs employ neural networks to 
approximate differential equation solutions while simultaneously meeting the 
boundary and initial conditions, rather than discretizing the domain on grids [11]. 
Because of their adaptability, PINNs are particularly attractive for complicated or 
high-dimensional systems, such those seen in quantum mechanics [21,22]. 
 
Machine Learning in Physics: Challenges & Future 
Even though machine learning (ML) has shown a lot of promise in physics, there 
are still many problems to be resolved. The majority of tests are conducted in 
idealized settings that are not representative of reality. Applications of ML models 
are hampered by noise, experimental heterogeneity, and a lack of labeled data [23, 
24]. To improve the resilience and application of models, researchers are looking 
into transfer learning, generative models, and adaptive algorithms [12]. 
Furthermore, high-dimensional data representations are frequently necessary due 
to the complexity of physical systems, which may lead to overfitting and 
computational inefficiencies. To address these problems, automatic machine 
learning (AutoML), cross-validation, and regularization are being developed [13]. 
The way machine learning (ML) in physics will connect theoretical knowledge with 
real-world implementation is its future. For example, quantum computation would 
be considerably enhanced for PIML integration in multi-physics problem solving. 
Since explainable AI, or xAI, offers interpretability and transparency in model 
predictions, its significance in physics has been growing. Hybrid frameworks 
created by fusing data-driven methods with limitations guided by physics are 
promising areas for further research [13]. It is also anticipated that these methods 
will lead to advances in material science, cosmology, and other fields. 
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Methodology 
Integrated Schrödinger Equation 
The loss function's definition included the Schrödinger equation: 
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Where  ( )   ( ) and   represent the wavefunction, potential and energy 
eigenvalues respectively. In order to guarantee that the generated neural network 
approximates wave functions that satisfy the equation and its given boundary 
conditions, this loss function was selected. 
 
Dataset Preparation, Architecture, Tools and Libraries 
SchrodingerNet, a feed forward neural network, is used to represent the wave 
function ψ(x). This feed forward neural network that has input layer, hidden layers 
and output layer. The time-independent PyTorch and visualization tools are used 
to model Schrodinger's equation. For deep learning models, numerical data 
representation, visualizations, and animations, various libraries are utilized, 
including torch, numpy, matplotlib, and funcAnimation. Simulations utilizing deep 
learning, ML, neural networks like PINNs, and reinforcement approaches are 
configured with subsequent parameters. 
The spatial domain for the quantum model has a defined range. With a set learning 
rate, training is carried out over a large number of epochs. The PyTorch framework 
for deep learning tasks is used to initialize the energy eigenvalues. 
In machine learning, epochs represent the number of times the entire training 
dataset is passed through the model during training. For example, if you have 10 
epochs, the model will see and learn from the entire dataset 10 times. In terms of 
the Schrodinger's equation, epochs represent how many times the neural network 
refines its prediction of the wave function to satisfy the Schrödinger equation for a 
given energy. Each epoch adjusts the model parameters to minimize errors, 
improving accuracy over time. 
 
Simulating Time Independent Schrodinger's Equation using PINNs 
One of the fundamentals of quantum physics is Schrodinger's equation. The 
equation's general principle controls how particles behave in quantum systems, 
and a quantum state of the system is currently evolving in both space and time. 
Analytical solutions are already available for straightforward issues like the 
harmonic oscillator, but there might not be many for more complicated potentials 
like the time-independent Schrodinger's equation. Numerical or approximative 
procedures are required in this situation. It is frequently necessary to quantize the 
domain and solve the extensive system of equations when using traditional 
numerical techniques like finite difference approaches. Neural networks, especially 
Physics informed neural networks (PINNs), provide an excellent substitute for this 
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approach due to its potential computational complexity [4].  
In order to enable the network to approximate solutions with exceptional efficiency 
and scalability, the governing equations are directly embedded into the loss 
function. In order to approximate the stationary solutions for a time-independent 
Schrodinger's equation for a harmonic oscillator potential  ( )       , we have 
used a neural network in this study. This network is trained to guarantee 
adherence to the constraints of the equations and minimize a physics-informed 
loss. This network highlights the usefulness of neural networks in investigating the 
eigenstates and eigenvalues in quantum mechanics and shows how they may be 
used to solve differential equations. This method could be expanded to more 
complicated situations where it could be impossible to find analytical answers. 
 
Discussion 
Physics-Informed Neural Networks (PINNs) for the Simulation of 
Schrödinger's Equation: Coding 
The fundamental concept of quantum mechanics that characterizes stationary 
states in quantum systems is the time-independent Schrödinger equation. 
However, it is difficult for academics and students to understand due to its 
mathematical complexity. In order to get around this, physics-informed neural 
networks (PINNs) were programmed to produce an animated visual representation 
that simplifies and makes sense of this equation. By turning abstract mathematics 
into a dynamic visual story, this method seeks to improve conceptual 
understanding in addition to computational correctness. 
Using automatic differentiation for highly efficient computation of spatial and time 
derivatives, PINNs are coded in this study to simulate the wave-like model 
representing solutions to the Schrödinger equation. This ensures that the 
governing equation is satisfied at every point in the computational simulation 
domain. The simulation demonstrates the behavior of quantum particles by 
dynamically displaying wavefunctions fluctuating within potential wells. 
Students can relate theoretical equations to real-world phenomena by using the 
animation's features, which include nodes, points of zero probability density, and 
the quantized energy levels connected to each wavefunction. 
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                                                                      Fig. 1 
Neural network is used in the simulation of these models for the evolution of wave 
functions of a particle for the same quantum harmonic oscillator potential 
 ( )         for different energy eigenvalues such as 0.30, 0.50, 0.70, and 0.90. 
Fig.1, represents four cases of each of these models (total 16 cases) for the 
evolution of wave functions of a particle for the same quantum harmonic oscillator 
potential  ( )         for different energy eigenvalues such as 0.30, 0.50, 0.70, 
and 0.90.These three-dimensional models are used to represent time-independent 
Schrodinger equation. They are discussed one by one.  
      , represents a low energy state with fewer nodes, e.g. 1 or 0, and decays 
slowly. This has a low probability density. 
      , represents a slightly higher energy level in which particle behavior 
significantly changes. This particle is easily found in the central region.  
      , represents higher energy state with more nodes, e.g. 2. The greater 
frequency, and higher probability density is needed to found the particle. 
      , represents higher energy than all previous cases and more nodes. This 
has higher frequency and more oscillations. The kinetic energy is high and the 
particle moves easily or freely and very high probability density is needed to found 
the particle. 
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                                                             Fig. 2 
To analyze the behavior of wavefunction a graph is plotted for different eigenvalues 
such as 0.30, 0.50, 0.70, and 0.90 between wavefunction and position of the 
particle, it is shown in fig. 2. This graph shows different eigenvalues in quantum 
states. The ascending order is used in coding. The sinusoidal wave function using 
the code gives eigenvalues. 
The energy eigenvalues (0.3, 0.5, 0.7, 0.9) of this wave are different in frequency, 
energy, and amplitude. It is evident from fig. 2, that       , represents a low 
energy state with fewer nodes, it decays slowly and has a low probability density. 
The       , represents a slightly higher energy level in which particle is easily 
found in the central region. The       , represents higher energy state with more 
nodes, greater frequency, and higher probability density, The       , represents 
higher energy than all previous cases and more nodes, with higher frequency, 
greater kinetic energy is high and very high probability density is needed to found 
the particle. In all four cases the nodes form at different points shows the variation 
of different parameters. 
 
Advantages of Visual Simulations 
Complex algebraic operations and numerical approximations are used in the 
majority of approaches to solving and understanding the Schrödinger equation. 
Despite their accuracy, these techniques can occasionally mask the physical 
understanding that underlies quantum behavior. The advantage of PINNs is that 
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they enable users to get closer to conceptual issues by avoiding some of the 
technical obstacles. Accessibility, adaptability, and interactivity are a few 
advantages of the visualization that PINNs generate [1, 3, 4, 6].  
 
Spatial and Computational Setup 
Since the energy eigenvalues are crucial Schrödinger equation parameters, they 
were initialized using an array with a single eigenstate. This simplifies the initial 
testing and enables the treatment of many eigenstates in the experiments to follow. 
Deep learning potential was demonstrated by this implementation, which also 
demonstrated that non-traditional data-driven solutions can be applied to 
quantum-mechanical problems. 
 
Applications of the Model 
This model is useful in various research fields of interest in many ways, like, for the 
simulation of energy eigenvalues and eigenfunctions for quantum systems, for the 
approximation of wavefunctions for systems that are not amenable to analytical 
solutions, such as multi-dimensional issues or harmonic potentials, creation of 
comprehensible wavefunctions and quantum behavior simulation for research and 
teaching purposes. For the solution of other types of partial differential equations, 
generally the time evolution of quantum systems. 
In conventional computation as a general tool for evaluating and testing quantum 
algorithms designed to solve the time-dependent Schrödinger equation. It provides 
the foundation for modeling semiconductors, superconductors, and a wide range 
of other materials by illuminating the behavior of electrons in potential wells. 
 To forecast molecular orbitals and characteristics, the Schrödinger equation for 
complicated molecular systems must be solved. modeling wavefunctions and 
potential energy surfaces for chemical reaction routes. 
The knowledge gathered from training this model could be used to improve PINNs 
even more for use in scientific computing and engineering. Employing neural 
network wavefunctions to determine a physical system's ideal configuration, such 
as a quantum system's minimal energy state. Visualization of quantum theory 
ideas such as tunneling, quantized energy, and wave-particle duality enhancing the 
learning experience of quantum physics through the use of interactive animations 
and real-time simulations. 

 
Results 
Given the energy eigenvalues, this model trains a physics-informed neural network 
(PINN) to simulate the wavefunctions of the quantum harmonic oscillator. The 
loss function fulfills the governing differential equation of the quantum system that 
the neural network is to learn by using the physical limitations in the Schrödinger 
equation. 
An approximation of the wavefunction ψ(x) for various energy eigenvalues was 
successfully found using the model. As anticipated for the theoretical solutions of 
the quantum harmonic oscillator, the wavefunctions exhibit oscillation and 
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symmetry. 
For the selected energy eigenvalues, loss convergence was observed, demonstrating 
efficient learning of the wavefunction structure. During training, it was noticed 
that the wavefunction was periodically captured and refined in the direction of the 
real solution. 
The wavefunction approximation changed dynamically with epochs, as the 
animated animation demonstrates. The capacity of PINNs to capture quantum 
mechanical features was demonstrated by the evolution of the wavefunction from 
an initial random state to a very accurate representation of the eigenstate. 
The findings demonstrated that dynamic systems might be efficiently analyzed by 
combining machine learning methods with conventional physics models. In 
addition to increasing computation performance, the hybrid approach enables a 
more thorough examination of system characteristics. 
The outcomes also confirm that physics-based neural networks provide a flexible 
method for resolving quantum problems. This method provides a prospective 
method of further inquiry for more complex potentials and high-dimensional 
quantum systems since it accurately approximates Eigen functions of the 
Schrödinger equation. 
 
Conclusion 
This work showed how to solve the quantum mechanical issue known as the "Time 
independent Schrodinger equation" using machine learning and PINNs. The 
training approach involved incorporating physical rules without the direct 
assistance of conventional numerical approximation techniques. At specific energy 
eigenvalue values, the PINN was able to approximate the wavefunctions of a 
quantum harmonic oscillator. The network's convergence to solutions that 
complied with the physical limitations was depicted by the wavefunction's time-
evolution throughout training. 
These concepts demonstrate how neural networks are highly flexible in simulating 
extremely large physical systems, bridging the gap between machine learning and 
physics. 
PINNs' ability to generalize across domains and energy levels makes them a prime 
contender for additional research in physics, including quantum mechanics and 
vibrations.  
The findings here suggest that machine learning holds promise as an additional 
instrument to improve our comprehension of physical phenomena, laying the 
groundwork for increasingly complex scientific and engineering applications.  
 
Future Work 
The focus of this paper is stationary systems. We are focusing on extending the 
methods to time-dependent Schrödinger equations or systems whose parameters 
change over time, which is a much broader topic for future research. By addressing 
these shortcomings, it will be possible to advance the use of PINNs and machine 
learning in tackling challenging physics problems and make them more useful, 
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dependable, and adaptable in real-world applications. 
Higher-dimensional quantum systems, time-dependent Schrödinger equations, 
high order potentials, and nonlinear dynamical systems are a few more examples 
of these multimodal strategies that combine models informed by physics with 
experimental evidence. To solve a multi-dimensional quantum system of atoms 
trapped in 2D or 3D potentials, train the model. a potential that has 
unpredictability, discontinuities, or practical limitations. 
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