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Abstract 
This article presents the Local Meshless Method (LMM) for numerically solving Partial 
Differential Equations (PDEs) conncected with a Total Variation (TV) regularization-
based edge detection model. The suggested meshless method not only restores images 
but also effectively preserves edges. This advantage arises from its independence from 
mesh generation, allowing it to handle complex geometries, significant irregularities, 
and discontinuities. Experimental results show that the proposed meshless method 
achieves excellent results in terms of image denoising, specifically measured by Signal to 
Noise Ratio (SNR), and edge detection, evaluated using the Edge Preservation Index 
(EPI), when compared to traditional mesh-based methods. 
 
Key words: Edge detection, TV- Regularization, Euler-Lagrange PDE (EL-PDE), Radial 
Basis Function (RBF) Interpolation, SNR, EPI, Filters, Multiquadric Basis Function     
 
Introduction 
Edge detection is a necessary task in Computer vision and image processing. It is an 
important component used to identify the boundaries within images. Edge detection is a 
challenging task when additive noise is concerned and when several edges bisect and are 
close together. The additive noise removal model is given below. 
 
                                                                        ,                      (1) 
 
where          is given the noisy image having additive noise    and   is the true 
image. Edge detection is important because it simplifies image data, reducing the 
volume of information that needs to be processed while retaining the essential structural 
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features of objects within the image. Edges provide crucial information for various 
subsequent visual tasks, including image recognition [1,2,3,4], image segmentation 
[5,6,7], image retrieval [9,10], face recognition [11,12,13], corner detection [14,15], road 
detection [16], and target tracking [17]. In the field of medical imaging, significant 
features are extracted from the retina of the human eye, including the length, breadth, 
and angle of blood vessels, using edge detection [18]. In the literature, edge detection is 
considered to carry the most important information in an image. Many strategies have 
been employed by researchers for image edge detection, resulting in effective image 
restoration and edge preservation. However, these techniques have limitations 
concerning edge detection and edge preservation. For further details, see [19,20,21]. 
Recent advancements in TV-regularization-based PDE models for edge detection have 
demonstrated effective outcomes in image denoising and edge detection. The first 
model for edge detection based on TV regularization and connected PDE is introduced 
and explained in reference [22]. Recently, various mesh-based techniques have been 
employed to address challenges in image edge detection, leading to some promising 
results. For detailed information, refer to sources [26, 27, 28, 29, 30, 31, 32]. However, 
image edge detection still encounters difficulties due to the associated EL-PDE, which is 
nonlinear and non-differentiable. Therefore, in this article, we utilize the Local Meshless 
Method (LMM) to mitigate these challenges and achieve a smoother solution. For more 
information, refer to sources [22, 23, 24] regarding models based on TV 
regularization. Peter et al. [25] introduced the first model for edge detection in images 
with additive noise using TV-based regularization. This model generates a PDE that is 
always nonlinear and non-differentiable. The results obtained using traditional 
schemes related to the TV-based edge detection model yield very satisfactory outcomes 
for image restoration while preserving edges. However, it also has some adverse 
properties, such as loss of image contrast in restoration, which leads to poor edge 
detection and increased computation time due to its nonlinearity and non-
differentiability. For more details, readers are referred to [25]. Recently, various mesh-
based schemes have been employed to address these challenges, resulting in improved 
outcomes for image edge detection. For further detail, see [26, 27, 28,29, 30 31, 32]. But 
still, image edge detection faces difficulties due to the associated EL-PDE, which is 
nonlinear and non-differentiable. In this article, we utilize the Local Meshless Method 
(LMM) to overcome the aforementioned challenges and achieve a smooth solution. 
Researchers have recently demonstrated that RBF interpolation methods are effective 
mesh-free techniques in both approximation theory and the numerical solutions of 
PDEs. The use of RBFs for interpolation has the advantage of being applicable to 
multidimensional scattered data [33, 34]. Meshless methods based on Radial Basis 
Function (RBF) interpolation have consistently shown superior results across various 
challenges, yielding smooth outcomes in both scientific and engineering applications 
[35, 36, 37]. The choice of the shape parameter often influences the results, with several 
basis functions commonly employed in RBF interpolation, including Multiquadric 
(MQ), Gaussian (GA), Inverse Multiquadric (IMQ), and Polyharmonic spline. For 
additional information, refer to [38, 39]. The appeal of RBF techniques stems from its 
meshless applications, which discretize continuous problems using just a collection of 
points. Adding this feature to the RBF technique is simple, particularly for problems 
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with complex shapes and multiple dimensions. The RBF methods are free of meshes and 
highly precise, making them effective for producing smooth solutions in complex 
geometries. The main advantage of   numerical methods commented with RBFs over 
traditional approaches is the absence of a mesh, resulting in higher performance than 
Finite Difference Scheme (FDM) [42,43], the Finite Element Method (FEM) [42], the 
Finite Volume Method (FVM) [41,44,45)], and the Pseudo-Spectral Method [46] in 
terms of spectral accuracy [47] and exponential convergence [48].  Hence the meshless 
approaches are superior to conventional methods regarding the smooth solution. For 
further information on RBF collocation techniques, see [49, 50, 51,52,53,54,55]. 
Hardy et al. proposed the Local Meshless Method (LMM) for the numerical solution of 
partial differential equations (PDEs) [56]. Later, he demonstrated through various 
numerical solutions of partial differential equations (PDEs) that the multi-quadratic 
radial basis function (MQ-RBF) is the most effective basis function for numerically 
solving different types of PDEs compared to other basis functions.  The Local Meshless 
Method (LMM) is user-friendly, offers a high level of accuracy, and exhibits exponential 
convergence when solving partial differential equations (PDEs). Due to its adaptive 
characteristics, effective computational approach, and straightforward mathematical 
implementation, the LMM can solve PDEs more quickly and efficiently than 
conventional mesh-based methods. This proposed meshless technique is especially 
advantageous for obtaining smooth solutions to both linear and non-linear PDEs. 
Inspired by the application of LMM, we will utilize it on the time-dependent EL-PDE 
associated with TV-based model for image edge detection. This approach aims to 
achieve a smooth solution for both image edge detection and image denoising. The use 
of LMM will enhance not only the effectiveness of image edge detection but also 
improve image denoising due to its various applications. 
The rest of the article is organized as follows. Section 2 presents related work. The first 
subsection includes a brief mathematical discussion of the TV-based edge detection 
model, while the second subsection discusses BRF interpolation. Section 3 focuses on 
the mesh-based gradient descent numerical scheme for solving the EL-PDE in 
connection with the TV-based edge detection model. This section also introduces the 
proposed LMM scheme for achieving a smooth numerical solution of the EL-PDE 
associated with the edge detection model. Section 4 describes the experimental results 
and discussions of the proposed LMM in comparison with traditional edge detection 
methods. Finally, the conclusion is presented in Section 5. 
 
Background Knowledge 
Total Variation-Based Edge Detection Model 
Peter et al. [25] introduced the first model for image edge detection in the presence of 
additive noise by utilizing TV regularization. This model has shown promising results in 
both image edge detection and denoising, thanks to the inherent edge-detecting 
capabilities of TV regularization. The mathematical framework for edge detection and 
image restoration provided by Peter et al. [25] is presented in equation (1) below. 
 

 ̂          ( )    ( )  ∫      
                 √               (2)    
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where  F represent restored image have additive noise (salt and paper noise)   from 
given noisy image   as mentioned in equation (1). The associated PDE of equation (2) is 
given follow. 

   (
  

      
)                  (   )             (3) 

Equation (3) can be further simplified as under. 
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which is non-linear and non-differentiable. 
 The time depended EL- PDE from equation (4) is given below. 
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For further details, see [25]. 
 
Radial Basis Function (RBF) Interpolation 
Let us discuss the RBF approach [18]. RBF is a real valued function whose value depend 
only on the distance from the origin, so that  ( )   (‖ ‖), or alternatively on the 
distance from some other point   ,  called center taken based through a stencil value n 
around a known center    , so that  (    )   (‖    ‖)  Any function   that satisfied 
the property  ( )   (‖ ‖) is called  RBF. The RBF method is used to interpolate 
smooth function,  ( )         where   is the bounded domain for   evaluation 

data points *     +   
     . Let {     }   

 
    be M center data points taking from 

evaluation N points, i.e.    . Now for {  
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points. The RBF approximation is defined as       
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The equation (6) leads to the following linear system. 
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 In matrix notation, the above system (7) can be written as 
                    (8) 
      
Where   (             )

 ,   (              )
   are  M 1 matries and L is to be 
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determined in it and   [   ]  (   )    
     is M M  matrix called interpolation or 

system matrix.  
The above equation (8) can be further defined as under by similar way as done in [53]. 
                     (9) 

Now N evaluation points *     +   
     and M center points {  

    }   
 
   , again the 

RBF approximation will become, 
  
∑    (‖     
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   )                                 ,                                        (10) 
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The above matrix system (11) results in the following system of equations.   
     ,                          (12) 

where   [   ]  (   )    
 =∑    (‖     

 ‖ 
   )  is called evaluation matrix. 

                
Put equation (9) in equation (12) 
 
     

                            (13) 
 
Let                     (14) 
 
Then equation (14) become  
     .               (15) 
Where D is N    matrix.                
 For more information, see [18] 
 
Numerical Schemes For TV –Based Edge Detection Model 
This section discusses numerical methods for solving the non-linear PDE (5) related to 
the minimization functional (2), which is used for edge detection. 
 
Implicit Gradient Descent Method (M1) 
EL-PDE from (5) in model [27] is given as under. 
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The implicit gradient descent method is applied on (16) and obtained the following 
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equations. 
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For more information see [25] 
 
Proposed Meshless Method (M2) 
This subsection introduces the Local Meshless Method (LMM) for efficient numerical 
simulation of the EL-PDE described in equation (5) related to the model in equation (2). 
The proposed LMM not only reconstructs the images effectively but also preserves sharp 
edges due to its adaptive characteristics, computational efficiency, and its mesh-free 
implementation using Multiquadric Radial Basis Functions (MQ-RBF). As a result, the 
PSNR and EPI values will consistently improve when utilizing the proposed meshless 
method. Assume *     +   

  be    data centers in a closed domain       with RBF 
equation  ( )   ‖ ‖       

   i.e.,   (   )    Thus, the polynomial term free RBF 

interpolation for the provided known  *  
    +   

  data points is expressed as follows. 

  ( )  ∑    (‖  
    

 ‖
 

  
   ) for i, j=1.2.3…,                    

    (23)  
The coefficient of    is found from equation (23) using the subsequent interpolation 

condition.   
 (  )     ,              (24) 
with a group of points which agree to centers points   . The RBF interpolation at     
data centers is presented through the given over determined interpolation form: 
                   (25) 
which give rise to          system of linear equations, which is responsible to evaluate 
co-efficient  , where   (          )

   and   (          )
  represent     × 1 

order matrices. In  equation (25), matrix A is acknowledged as           square 
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interpolation matrix also called system matrix. Matrix A can be represented as follow.  

  [   ]  * (‖  
    

 ‖
 
)+
        

.          (26) 

In equation. (25)  matrix A is invertible [58] and positive definite which have critical 
aspect for unique solution of Equation. (25). Thus 
                      (27) 

Furthermore, at  *  +   
  N evaluation data points and *  +   

       center points, the RBF 

interpolation by applying Equation (23) generates       matrix C which is written as 
follows. 

  [   ]  * (‖     
 ‖
 
)+                                       .     (28) 

Additionally, using the matrix-vector product to obtain F, the interpolation over the 
selected condition is approximated for N data points and is explained as follows. 
                     (29) 
Combining equation (27) and (29) result in the given equation. 
                                   (30) 
or 
                                           (31) 
This gives an estimate of the answer at any given location in  . Since the time marching 
restoration PDE [25] from equation (5) is mentioned by the following equation, where F 
is of N×1 order matrix. 

  

  
 
 

  
(

  

√  
    

 
)  

 

  
(

  

√  
    

 
)               (   )        (32) 

Using the specified F(x, y, 0) with boundary condition  
  

  
=0 on ∂  .The following is an 

improved version of equation (32). 
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The restoration equation (33) and the value from (31) are combined to create a 
nonlinear restoration system of equations that can be solved using the Implicit Gradient 
Descent iterative approach. 
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Equation (34) can further be simplified as under. 
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where, 
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The LMM has greater flexibility in choosing a Radial Basis Function (RBF), allowing it 
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to effectively fulfill the resulting EL-PDE (35). The most commonly used RBF in LMM is 
the Multiquadric Radial Basis Function (MQ-RBF), which generally achieves spectral 
accuracy when the shape parameter c is appropriately selected. This selection is entirely 
dependent on the image size and noise level.  
 
Algorithm for LMCT (M2) 
RBF interpolation; 

1. Select     , n number of data pixel points. 
2. Determine L according to the equation (27) by MQ-RBF. 
3. Calculate F by using equation (31) by applying MQ-RBF. 

 
TV regularization; 

4. Select the values for             . 
5. Pick n      quantity of data pixel centers i.e.                from N data points 

next choose n=0. 
6. Replace E as Local RBF utilizing equation (31) in equation (35). 

7. Select       for each data center point    , for      , then compute  (   ) 
according the equation (35) by LMM, where  ( )     

8. 
‖ (   )  ( )‖

‖ ( )‖
           criteria is utilized to break the iterative process. If no, 

move gain to step 7. 
9. End. 

10. Output result     (   ) 
 
Experimental Analysis  
This section presents experimental findings and analyses conducted on various images, 
specifically Fingerprint, Rice, and Lena, to evaluate the performance of the proposed 
meshless algorithm, M2. Grayscale images are used to assess the effectiveness of both 
M1 and M2. The test images are displayed in Figure 1. Salt and pepper noise 
significantly degrades image details, leading to challenges in performing image 
processing tasks such as edge detection, image segmentation, and face recognition. In 
this study, we compare edge detection in test images containing Salt and Paper noise 
with mean                    In order to verify the picture restoration outcomes of 
proposed LMM M2 and compare its results with traditional mesh-based method M1. We 
select the image size with       size of the image and use the suggested LMM M2. 
Peak-to-noise ratio (PSNR) is taken into consideration to quantify the denoised image. 
This measure is widely used to evaluate the quality of the restored image. PSNR is 
calculated as 

PSNR=        (
      *  +

 

‖    ‖ 
)                   (36) 

Where    is the final denoised image,     denotes the image data size, and   is the 
original images that were provided. Greater the PSNR value better will be the 
restoration performance.        
By choosing the best Regions of Interest, the Edge Preserving Index (EPI) is utilized to 
determine the edge's quality. The EPI range typically lies between 0 and 1, where a 
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blurry edge inside the Region of Interest (ROI) corresponds to a lower EPI value and 
vice versa. Therefore, the following equation is used to estimate the EPI value for the 
mth ROI.  

    
 

 
∑

 (     ̅̅ ̅̅ ̅̅        )

√ (     ̅̅ ̅̅ ̅̅         )

 
   ,          (37) 

where,  M is considered the total number of regions,    the noisy ROI region, and     

is the denoised ROI region. We refer to    ̅̅ ̅̅ ̅ as the empirical mean   . Within the 
ROI's defined range,   is considered the correlation and is expressed as follows: 
 

 (      )   ∑   (   )    (   )       .         (38) 

 
The EPI value near to 1 leads to the good edge preservation property. The suggested 
scheme M2's faster convergence achievement and the stoppage of the iterative 
procedure are represented by the following formula. 
‖       ‖

‖  ‖
   ,            (39) 

where        gives the maximum amount of error allowed. (MQ-RBF) is chosen in the 
suggested algorithm M2 as a basis function. Every selected point (     ) has the 

following MQ-RBF expression:  

   (   )  √   ((    )
 
 (    )

 
) ,        (40) 

where            

     (    )
 
 (    )

 
   

 
 
 
 

 
 
    Figure 1:  Test images for edge detection 
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 Fig: 2 Comparison of edge detection and image restoration performance of 
Fingerprint, Rice, and Lena images; (a) Given test image Fingerprint; (b) Edge based 
test image; (c) Edge based based noisy image containing salt and paper noise p=25%; 
(d) Restored by M1 method; (e) Restored by Proposed M2 method with c=1.09. (f) Test 
image Rice; (g) Edge based test image; (h) noisy edge-based image having salt and paper 
noise p=30%; (i) Obtained image using M1 method; (j) Obtained image using M2 
proposed method with c=1.15. (k) Test image Lena; (l) Edge based test image; (m) Edge 
based noise image with salt and paper noise p=35%; (n) Resultant image by M1; (o) 
Resultant image by M2 with c=1.18.  
 
Table1: Analysis of the PSNR and EPI values for techniques M1 and M2.  
 

Image Size 
           Technique M1          Technique M2 

EPI PSNR EPI PSNR 

Fingerprint      0.649 23.21 0.701 23.73 

    Rice      0.695 24.27 0.749 24.89 

    Lena      0.71 25.36 0.763 25.87 
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Table 2: Analysis of two schemes M1 and M2 in terms of CUP time in seconds and 
number of iterations. 
 

Image 
            Scheme M1               Scheme M2 

Iteration Time(s) Iteration Time(s) 

Fingerprint 28 11.02 13 8.19 

Rice 18 9.21 10 6.83 

           Lena 14 8.39 8 5.44 
 
Experiment 
In this first comparison, we compare the two mesh-based method M1 and mesh-based 
method M2 for edge detection on three images i.e., Fingerprint, Rice, and Lena having 
salat and paper noise with noise variances p=25%, 30%, and 35%, respectively which are 
shown in Figure 2. In Figure. 2, (a)-(b), (f)-(g), and (k)-(i) represent the original and its 
respective edge-based images, receptively. Figure reviled that the image edge detection 
obtained by the suggested meshless approach M2 is for better than M1. M1 also results 
in good edge detection outcome because of the TV regularization used in it which is the 
inherent application of TV regularization. But due to the associated second order Euler 
Lagrange PDE, it becomes anisotropic regularization-based filter which gives best edge 
detection results compared to the traditional filters [27]. But due to the nonlinearity and 
differentiability of associated PDE, sometimes the traditional mesh-based method M1 is 
struggling with smooth solution regarding edge detection i.e., weak and discontinuous 
edge detection results and hence also produced poor restoration results. These results 
are listed in Figure. 2 as (d), (i), and (n), respectively for the three test images 
Fingerprint, Rice, and Lena.  However, the meshless algorithm M3 produces more 
effective image restoration (edge detection and denoising) results compared to the 
traditional method M1 due to a mesh-free feature, adaptive nature, MQ-RBF 
approximation, and the smooths the solution of the PDE associated with the TV 
regularization-based model by meshless method M2. These reconstructed results are 
displayed in Figure. 2 as (e), (j), and (o), respectively of the three test images. 
Furthermore, Table. 1 presents that EPI and PSNR values of M2 are greater than M1 
which demonstrate the best restoration performance of algorithm M2 over algorithm M1 
regarding the edge detection and denoising for all the three test images Fingerprint, 
Rice, and Lena. It can also be seen from Table. 2 that the computation time (CPU) and 
number of iterations needed for convergence approach M2 are lower than in approach 
M1 due to the computational efficiency nature of the meshless method M2. Hence the 
proposed meshless method M2 produces quick restoration performance than traditional 
mesh-based method M1. 
 
Conclusion 
This article introduces the Local Meshless Method (LMM) for the numerical solution 
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of edge detection in a Total Variation (TV) model connected to the enhancement of 
images through smoothing and salt-and-pepper denoising. The LMM offers several 
advantages, including quick, high-quality restoration performance in both edge 
detection and denoising. Its benefits arise from its meshless and adaptive nature, the 
use of Multiquadric Radial Basis Functions (MQ-RBF) as the basis function, and its 
computational efficiency The associated meshless scheme was tested on various 
images and its results were compared with those obtained from traditional methods 
and filters. The experimental results revealed that the proposed meshless method 
(LMM) significantly outperforms many traditional methods in image restoration, 
specifically in edge detection and denoising, as indicated by improved EPI and PSNR 
values, as well as reduced CPU time. 
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