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Abstract 

In this article, we introduce and examine new integral operators involving four 
parametric Wright functions. These operators extend and generalize existing integral 
operators found in the literature. We explore several geometric properties of these new 
operators, including univalency and convexity. Our discussion focuses on how these 
properties manifest in the context of four parametric Wright functions. 
 
Keywords: Convex Function, Star like Function, Univalency, Close to Convex 
Function. 

Introduction 

The four parametric Wright function  
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was introduced by E. M. Wright for , 0   . The series defined in equation (1.1) 

converges absolutely and it is an entire function [1-3]. The wright function can be seen 
as a special  case of four parametric wright function. The Wright function  
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was introduced by E. M. Wright [4] in 1933 and has since been applied in various fields, 
including the partitions of asymptotic theory, also the theory of  Hankel type integral 
transformation and operational calculus of Mikusinski. Wright functions played a role in 
solving pde’s  of fractional order with corresponding Green functions being expressed in 
terms of Wright functions [5, 6]. Mainardi [7] used Wright functions to solve the 

fractional diffusion wave equation. Luchko et al. [1, 8] derived scale invariant results of 
pde’s (partial differential equations) of fractional order in form of Wright functions. In 
2022 M. U. Din [9] determined the partial sums of four- parametric Wright function. 

Let   be the class having the functions t in the form of 

2

( ) ,l

l

l

t r r c r




                                                                              (1.3) 

analytic contained in open unit disc { | 1}.U r r   

Wright function, especially in its four parametric form, is defined as a series that 
generalizes several well-known special functions, including the generalized 

hypergeometric function and the Mittag-Leffler function. Recently, numerous 
researchers have investigated various geometric belongings, such as univalency, 
convexity, star likeness as well as close-to-convexity of special functions. Studies have 
been conducted on  geometric properties of hypergeometric functions [10, 11], Bessel 
functions [12], Struve functions [13], Lommel functions [14].This body of work  led 

Sourav Das and Khaled Mehrez [15] to explore the geometric properties of four 
parametric Wright function. we will derive some sufficient conditions by utilizing 
inequalities related to four parametric Wright functions. 

We consider the following normalization of 
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We requisite following lemmas to verify our key results: 

Lemma 1[16]: 

If function 2

2( ) ... ...n

ng z z c z c z      is analytic in U also 

21 2 ... ... 0nc nc    , 

Or 

21 2 ... ... 2nc nc     

is close-to-convex regarding to convex function log(1 )z z   

Lemma 2 [14]: 

If  function 3 2 1

3 2 1( ) ... ...n

ng z z d z d z 

      analytic in U also if 

3 2 11 3 ... (2 1) ... 0nd n d      , 

Or 

3 2 11 3 ... (2 1) ... 2nd n d      . 

Then ( )g z  is univalent in U . 

Main Results 

Theorem 2.1: If , , ,c e v  with inequality 

( ) ( ) ( 1) ( ( 1) ) ( ( 1) ),h c h e hv h c h e h v              

Then  
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is close to convex regarding to convex function log(1 )z  . 

Proof: 

Consider  
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We have 
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and 

( ) 0c hv   , 

Under the conditions on parameters, for 2.h   In view of Lemma 2.1, we have to show 

that ˆ 0ha  . Here we observe that ˆ
ha is positive if,  
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for all 2.h   

Thus  
( , )

( , )
ˆ( )

v e

c
zW 

 is close to convex regarding to convex function  ˆlog(1 )z  . 

Theorem 2.2: If , , ,c e v  with inequality 
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Proof: Let 
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and 2 1 0hA   for all 2.h   

Firstly we will show that   1 2
2 1 h m
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 is a sequence of decreasing functions. 
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0c  , 0e   
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